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Abstract. Monocular Metric Depth Estimation (MDE) in endoscopic
images is a crucial step to improve navigation during medical procedures,
as it enables the estimation of dense, real-scale 3D maps of the organs.
For instance, in monocular flexible ureteroscopy (fURS), accurate navi-
gation and real-scale information are essential for locating and removing
kidney stones efficiently. Currently, the most promising approach to infer
depth from single passive cameras is by supervised training of large neu-
ral networks, so-called foundation models for MDE. However, the depth
output of these models is biased when the training data domain does not
fit the goal domain (both camera and scene). At the same time, one of the
greatest challenges in medical imaging is the lack of annotated datasets,
as obtaining real ground-truth (e.g., depth data) is difficult. To overcome
this, simulation has become a valuable tool in ureteroscopic imaging re-
search. In this study, we introduce KidneyDepth, a synthetic dataset
designed to reduce the gap between simulated and real-world 3D imag-
ing. It includes a variety of shapes (e.g. mesh from CT scan, geometric
primitive forms) along with different textures and lighting conditions,
generated by BlenderProc2 [7]. To assess the effectiveness of Kidney-
Depth, we fine-tune two state-of-the-art MDE models (Depth Anything
V2 and ZoeDepth) and test their performance on both simulated and
real ureteroscopic images. Additionally, we evaluate the validity of their
output by using the inferred depths in the context of a RGB-D SLAM
system. Our results show that training models on a synthetic dataset with
diverse structures and lighting conditions improves depth estimation in
real endoscopic images and our simulations show that these RGB-D im-
ages enhance overall SLAM accuracy. The KidneyDepth dataset can be
found in https://zenodo.org/records/14893421.

Keywords: Monocular metric depth - Dataset - Navigation - Ureteroscopy.


https://zenodo.org/records/14893421

2 L. Oliva-Maza et al.

1 Introduction

Flexible ureteroscopy (fURS) is a common treatment for removing kidney stones.
In this procedure a flexible ureteroscope is inserted through the urinary tract
into the kidney to inspect it and remove stones. Depending on the stone’s size,
it may need to be fragmented using a laser before extracting the smaller pieces,
or, if small enough, it can be removed through the working channel without
fragmentation. Knowing the exact size of the stone is important to determine
whether laser fragmentation is necessary or not [25]. To prevent the need for a
follow-up intervention, it is essential that all stones and fragments are located
and removed during the procedure.

The use of fURS is growing due to its benefits for the patient [9], but it
presents several challenges for the surgeon. These include a steep learning curve,
uncomfortable positioning and difficulty maintaining spatial awareness within
the organ using only monocular endoscopic live video [3]. Robotic systems like
[13], [22] and [23] address these issues by improving ergonomics and allow solo
surgery. Moreover, monocular visual Simultaneous Localization and Mapping
(vSLAM) algorithms can assist the surgeon in surgical navigation without ad-
ditional sensors [I8]. However, the primary challenge with monocular vSLAM is
the lack of real-scale information.

Metric depth from monocular images can be estimated using either self-
supervised models or foundation models. Self-supervised models focus on learn-
ing depth from unlabeled data (e.g. stereo image pairs or image sequences) while
foundation models are pre-trained on large, diverse datasets and then fine-tuned
to a specific task (e.g. metric depth estimation). The main limitation of self-
supervised models is their poor generalization across different datasets, often re-
quiring retraining with each new dataset [4]. In the medical domain, these models
also face challenges in generalizing accross different patients and anatomies [10].
Also, obtaining ground truth depth maps for fine-tuning remains difficult.

To overcome these challenges, we introduce KidneyDepth, a dataset design
for metric depth estimation consisting of various shapes (ranging from real CT
scans of the kidney to primitive forms like cylinders and tori), lighting conditions
(static lights and lights mimicking the endoscope’s illumination, i.e., attached to
the moving camera), and diverse materials (with different reflection properties).
We fine-tune ZoeDepth [4] and Depth Anything V2 [26] on this dataset, achieving
accurate depth map estimations for real kidney images. These models are also
evaluated in an RGB-D SLAM system across different trajectories in a simulation
model with new materials not seen during training.

2 Related Work

2.1 Monocular Depth Estimation

Monocular Metric Depth Estimation (MDE) from endoscopic images can signifi-
cantly enhance 3D reconstruction and navigation during minimally-invasive sur-
gical procedures; in effect, this contribution applied to a monocular endoscope
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can be visualized as an upgraded sensor, yielding RGB-D data for improved
mapping and navigation within body organs.

Self-supervised models for visual depth estimation learn to infer depth by us-
ing unlabeled data and applying e.g. structure-from-motion methods [14], photo-
metric consistency|21], and temporal consistency between video frames [6]. Yet
as previously mentioned, self-supervised models suffer from poor generalization.

In contrast, supervised training of foundation models has the potential to
address these limitations. They are pre-trained on large, diverse datasets and
can be subsequently fine-tuned for specific tasks or datasets. For instance, Depth
Anything V2 |26] uses a transformer-based architecture trained on both synthetic
and real-world data, while Zoedepth [4] combines multi-scale learning with depth
and semantic information. Both models were evaluated on medical datasets in
[10], without fine-tuning. However, estimating accurate metric depth requires
fine-tuning these models on domain-specific datasets, which is hindered by the
lack of ground-truth depth maps in the medical domain.

2.2 Datasets

Most existing datasets for real endoscopic procedures focus on laparoscopy [20]
or colonoscopy [2], [T5]. A key challenge in acquiring useful real-world data is the
difficulty of capturing ground truth information required for supervised training,
leading some studies to focus on ex-vivo scenarios [I9] or simulations.
Simulations offer significant advantages, such as the ability to accurately gen-
erate segmentation masks, endoscope poses, point clouds, and depth maps that
are perfectly aligned with the corresponding synthetic images. However, the pri-
mary challenge lies in bridging the simulation-reality gap. Approaches such as
SimuScope [I7] generate synthetic endoscopic images with realistic lighting and
textures. Other methods, like [12], use sim-to-real transfer techniques to train
depth estimation models, while [I6] leverages cinematic rendering for photoreal-
istic medical images. Additionally, [IT] applies neural stylization to anatomical
meshes for improved endoscopic image generation. To the best of the authors’
knowledge, no existing datasets currently focus on ureteroscopic images.

2.3 Visual Navigation in the Urinary Tract

Accurate visual navigation within the kidney is crucial to ensure no stones or
fragments are left behind. To facilitate this, [I] uses structure from motion to
estimate a point cloud of the kidney’s interior, registered with pre-operative
CT scans. Meanwhile, [27] and [8] use electromagnetic sensors for metric pose
tracking of the ureteroscope with high accuracy. In contrast, [18] extends ORB-
SLAMS3 [5] to accurately estimate the ureteroscope’s pose and a up-to-scale map
of the kidney using only the endoscope images. Our goal is to generate metrically-
accurate kidney models and precise metric motion estimates in real time, using
only a thin, flexible monocular endoscopic camera.
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3 Methodology and Results

In this section we will focus on explaining the dataset content and the differ-
ent evaluations performed on it. The experiments have been performed with a
13th Gen Intel® Core™ i9-13900K CPU (24 cores), 64GB RAM, and a Nvidia
GeForce RTX 4090 24GB GPU.

3.1 KidneyDepth

Given the absence of ureteroscopic image datasets with depth maps, we introduce
KidneyDepth, a synthetic dataset developed for metric depth estimation. The
dataset serves three main goals: (1) generation of ground truth maps to train
depth estimation models, (2) evaluation of the models on real endoscopic kidney
images, and (3) SLAM trajectory evaluation.

To achieve these goals, we created three sub-datasets: KidneyDepthMetric
for fine-tuning depth estimation models, featuring various shapes (ct: mesh
extracted from a CT scan of the kidney using ImFusion SuiteEl- Figure
ct_stones: ct with stones, cylinder and tori), materials (skin, flesh, marble and
painted - Figure , and light sources (dynamic: flashlight moving with the
camera and static: distributed lights inside the corresponding mesh); Kidney-
DepthSLAM for evaluating SLAM trajectories, consisting of longer sequences
within the ¢t and ct_stones mesh with different materials (bloody organ, ves-
sels and thin vessels - Figure [1d]); and KidneyDepthfURS, which includes real
ureteroscopic images recorded at the University Hospital Freiburg (Figure .

(c)

Fig.1. (a) Kidney mesh from CT scan with camera trajectories, (b) Materials of
KidneyDepthMetric: skin, flesh, marble and painted with the dynamic light inside the
ct mesh. (c¢) Materials of KidneyDepthSLAM: bloody organ, vessels and thin vessels
with the dynamic light inside the ¢t mesh (d) Example of KidneyDepthfURS.

The simulated images, camera poses and depth maps are generated using
BlenderProc2 [7] an open-source framework for generating synthetic data by
rendering realistic 3D scenes with configurable camera paths, lighting, and ma-
terials. The dataset can be found in https://zenodo.org/records/14893421.

4 ImFusion GmbH, |www.imfusion.com
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3.2 Metric Depth from Monocular

We fine tuned Depth Anything V2 [26] and Zoedepth [4], using the KidneyDepth-
Metric dataset split into training (70%), validation (20%), and test sets (10%).
The models were fine-tuned for 40 epochs with augmentations like noise, bright-
ness adjustments, and rotations/scale shifts. Depth Anything V2 was trained on
two Nvidia GeForce RTX 3090 GPUs, while Zoedepth used one.

Depth Anything V2 [26] is a monocular depth estimation model that uses
an encoder-decoder architecture with multi-scale fusion and attention mecha-
nisms to generate depth maps. Trained on both real-world and synthetic datasets
with L1 and scale-aware losses, it provides accurate depth predictions. Similarly,
Zoedepth [4] estimates metric depth by integrating appearance and geometry
features through a deep network with a metrics bin module. Also trained on real-
world and synthetic datasets, it utilizes photometric, gradient, scale-invariant,
and edge-aware loss functions.

We have fine-tuned both models on different subsets of KidneyDepthMetric
to evaluate how shape, material, and light source affect the depth estimation.
For the evaluation, we used KidneyDepthSLAM images, where the material

is unknown to the models. We computed §; = n (max (%, %)) < 1.25 and

AbsRel = % > @, where d; is a pixel from the predicted depth map D, d;

is its corresponding pixel on the ground truth map D, N is the total number
of pixels and n(condition) is the percentage of pixels that satisfy the condi-
tion. §; measures the percentage of predicted pixels with a deviation of no more
than 25%, while AbsRel calculates the average percentage difference between
predicted and true distances. These metrics have been computed for different
configurations (Table . "Material: mat" represents a fine-tune where only the
material mat has been seen in different shapes and light conditions, "Light:
light" different materials and shapes that have been seen under the light source
light, and "Shape: shape" where the shape shape has been seen with different
materials and light sources. For "Complete" all the images have been used.

In Table [1| we observe that, when the models are fine tuned on a single ma-
terial ("Material: mat"), they do not generalize well to new materials. When
trained with multiple materials ("Complete"), the models generalize better, as
each material interacts with light differently, increasing the likelihood that new
materials share properties with those already learned. Concerning light sources,
the results highlight that the light in the simulation must closely resemble real-
world conditions, observe how the configuration "Light: dynamic" and "Com-
plete" results in similar accuracy, indicating that "Light: static" does not con-
tribute significantly during training. A similar behavior is observed with shapes.

Finally, we visually evaluate the inferred depth of the fine tuned models on
KidneyDepthfURS. Showing a big improvement of these models after fine-tuning
them on synthetic images (Figure . While in simulation, Depth Anything V2
outperforms Zoedepth (Table , in real ureteroscopic images (Figure , Depth
Anything V2 provides finer depth estimates when it is accurate, yet it does fail
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Table 1. Comparison of Depth Anything V2 and Zoedepth when fine-tuned in different
subsets of KidneyDepthMetric and tested on images from KidneyDepthSLAM. The
bold values represent the overall best performance within the model.

Depth Anything V2 Zoedepth
01 1T | AbsRel | 01 T |AbsRel |
Material: marble 0.655 0.199 0.501| 0.264

Material: flesh 0.184 0.389 0.040| 0.622
Material: painted 0.099 0.631 0.047| 0.813
Material: skin 0.282 0.418 0.264| 0.423
Light: dynamic 0.766 0.156 0.788| 0.150
Light: static 0.542 0.27 0.378 | 0.339

Shape: ct & stones 0.863 0.14 0.794| 0.167
Shape: cylinder & torus|| 0.203 0.406 0.224| 0.44

Complete [o.869] 0.139 [[0.773] 0.179 |

more frequently than Zoedepth (e.g., Figure [2{row 5). Additionally, while Depth
Anything V2 operates at 12 fps, Zoedepth is limited to 5 fps.

3.3 RGB-D SLAM in Ureteroscopy

To evaluate the effect of the inferred depths, we have extended [I8] to work with
RGB-D image. The SLAM system was evaluated on the KidneyDepthSLAM
sequences by computing the Absolute Trajectory Error (ATE), the Scale Error
(€scale), and the percentage of frames where the SLAM successfully tracks (nraj)-

The Absolute Trajectory Error is defined as ATE = \/% Zivzl [l — ¢

where N is the total number of frames, and x; and X; are the estimated and
ground truth positions, respectively. This metric, as proposed in [24], evaluates
the root mean squared error (RMSE) of the trajectory after alignment.

To measure the scale consistency of the SLAM system, we compute the Scale
SN x|
S TRl
tween the estimated and ground truth trajectories — a value closer to 1 indicates a
more accurate scale estimation. These metrics were computed for the trajectories
estimated by the SLAM system when using inferred depth from Depth Anything
V2 and Zoedepth (both after fine-tuning with "Complete"). Additionally, ATE
and naj were calculated for the trajectories estimated by the monocular SLAM
based on [I8] after scaling them to correct for scale error, as monocular esti-
mates trajectories up to scale. KidneyDepthSLAM is composed by: Seq 01 and
Seq 03 where the camera explores all the calyxes of the ¢t mesh with dynamic
light and bloody organ and wessels material respectively; Seq 02, Seq 04 and
Seq 05 where we add camera rotations and explore the ct stones mesh with
bloody organ, vessels and thin vessels material.

Table |2 presents the computed metrics. Zoedepth generally performs better
than Depth Anything V2 in estimating scale across most trajectories. Due to

Error, €scale = This ratio quantifies the deviation in scale be-
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=

Z (fine tuned)

RGB DA (original) DA (fine tuned)  Z (original

Fig. 2. Inferred depths of images from KidneyDepthfURS ("RGB") by using Depth
Anything V2 ("DA (original)"), the fine-tuned configuration on "Complete" ("DA (fine
tuned)"), Zoedepth ("Z (original)"), and its fine-tuned configuration on "Complete"
("Z (fine tuned)").
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inaccuracies in the estimated depth maps, and scale errors, the ATFE is larger for
RGB-D compared to the monocular estimated trajectories after scaling. How-
ever, a key advantage of RGB-D is its one-frame initialization, which allows the
SLAM system to track the camera trajectories over a greater number of frames.

Table 2. Performance of RGB-D SLAM on synthetic sequences. Monocular has been
scaled with respect to the ground truth before computing the ATE.

Depth Anything V2 Zoedepth Monocular

Sequence|| ATE [mm] €scale| Mtraj ATE [mm] €scale| Mtraj ATE [mm] Ntraj
Seq 01 2.46 0.89 199.96% 1.84 0.93 {100.0% 0.15 95.74%
Seq_ 02 2.81 0.91 |199.96% 2.07 0.89199.91% 0.21 95.30%
Seq_ 03 2.18 0.88199.13% 0.93 1.09 {100.0% 0.16  [98.91%
Seq 04 1.88 0.97 199.96% 1.13 1.08 {100.0% 0.18  [99.26%
Seq 05 1.90 1.20 (93.61% 2.77 1.33 {99.96% 0.34  [61.98%

In monocular SLAM, features from different frames must be matched to
triangulate and create new map points, resulting in sparse maps. In contrast,
RGB-D SLAM generates denser maps since the depth of each pixel is known,
eliminating the need for matching and triangulation. Map points are used to
estimate the camera pose by matching the projected map points to the extracted
features in the new image. In Seq 05, thinner vessels lead to fewer features,
fewer matches and a sparser map in monocular SLAM, making it harder to
track the camera pose (low nyaj). However, RGB-D SLAM generates denser
maps, facilitating better pose tracking and maintaining a high nyaj.

4 Conclusions

We introduce KidneyDepth, a synthetic dataset of ureteroscopic images designed
for MDE in monocular flexible ureteroscopy (fURS). The dataset consists of
three parts: KidneyDepthMetric, KidneyDepthSLAM, and KidneyDepthfURS.
We use the metric depth data in KidneyDepthMetric to fine-tune two state-
of-the-art MDE foundation models (Depth Anything V2 and ZoeDepth), and
we use KidneyDepthSLAM and KidneyDepthfURS to evaluate these models.
With KidneyDepthMetric, we explore which factors impact the learning pro-
cess, demonstrating that training with diverse materials improves the model’s
ability to generalize to unseen images. Additionally, we assess the inferred depths
of KidneyDepthSLAM in a RGB-D SLAM system based on [18], showing that
both models accurately estimate absolute scale and the endoscope trajectories,
while also enabling faster initialization. Finally, we evaluate the fine-tuned mod-
els on KidneyDepthfURS, demonstrating an improvement in monocular depth
estimation for real ureteroscopic images.

By estimating the metric depth of monocular ureteroscopic images, surgeons
can accurately evaluate the real-world scale of objects (e.g., kidney stones) in the
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images. Integrating the inferred depths into a SLAM system enhances navigation
by enabling pose tracking in real scale over a larger number of frames. Our re-
sults show that fine-tuning MDE models with synthetic images yields promising
performance on real endoscopic images, providing a solid foundation for further
advancements in surgical navigation.
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