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Abstract. As medical diagnoses increasingly leverage multimodal data,
machine learning models are expected to effectively fuse heterogeneous
information while remaining robust to missing modalities. In this work,
we propose a novel multimodal learning framework that integrates en-
hanced modalities dropout and contrastive learning to address real-world
limitations such as modality imbalance and missingness. Our approach
introduces learnable modality tokens for improving missingness-aware
fusion of modalities and augments conventional unimodal contrastive ob-
jectives with fused multimodal representations. We validate our frame-
work on large-scale clinical datasets for disease detection and prediction
tasks, encompassing both visual and tabular modalities. Experimental re-
sults demonstrate that our method achieves state-of-the-art performance,
particularly in challenging and practical scenarios where only a single
modality is available. Furthermore, we show its adaptability through suc-
cessful integration with a recent CT foundation model. Our findings high-
light the effectiveness, efficiency, and generalizability of our multimodal
learning approach, offering a scalable, low-cost solution with significant
potential for more complicated clinical applications that allow miss-
ing modality input. The code is available at |https://github.com/omron-
sinicx/medical-modality-dropout.

Keywords: Neural network fusion - Contrastive learning - Chest com-
puted tomography (CT) - Lung diseases.

1 Introduction

Advancements in medical diagnostic have led to increasingly diverse clinical
data, comprising multimodal sources such as medical images (e.g., computed
tomography [CT] and magnetic resonance imaging) and tabular data (e.g., elec-
tronic health records [EHRs| and radiology reports). This diversity has driven
research in multimodal learning to enhance predictive modeling in health care
172429124 T2B30/T8 263 T3 76I3I36I11I82]. Deep learning models trained on
multimodal data have demonstrated improved performance in disease detection
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and prediction, including lung diseases analysis [I58I38]. Despite these advance-
ments, effectively leveraging multimodal information remains challenging due to
real-world constraints such as modality imbalance and missingness.

Previous works have attempted to mitigate these challenges through modal-
ity dropout, wich enhances model robustness by simulating missing modalities
during training [T0I23IT6125]. However, the traditional modality dropout uses
fixed placeholders, limiting its ability to improve missingness awareness. Recent
methods have explored learnable missingness instructions [II32/17]; however,
their integration into modality dropout remains underexplored. On the other
hand, contrastive learning has emerged as a powerful technique for multimodal
representation learning [729/36l4T23T28T4I3534]. By encouraging models to
associate information from heterogeneous sources that refer to the same un-
derlying concept (e.g., the same patient or event), contrastive learning improved
downstream task performance. However, most contrastive methods focus on uni-
modal representations, whereas the fused multimodal representations were not
utilized.

In this research, we propose a novel multimodal learning framework designed
to enhance both unimodal and multimodal performance for disease detection
and prediction. We build a multimodal model consisting of unimodal encoders,
a neural fusion module, and a task-specific head. We assume the unimodal en-
coders are pretrained and frozen during our training to demonstrate the improve-
ment with a low cost of additional training. Unlike previous work that produced
unimodal representations by unimodal encoders, our method leverages the mul-
timodal model to generate unimodal representations with modality dropout.
Additionally, we introduce learnable modality tokens in modality dropout to
improve the model’s awareness of missing modalities. Furthermore, we propose
multimodal contrastive learning with fused multimodal representations for bet-
ter representation binding. We validate our method using two large-scale public
clinical datasets with three tasks of disease detection and prediction from CT
and tabular data. We also employ a recent CT foundation model [33] as the
encoder and show the improvement by our method. The contribution of this
work is threefold: 1) We propose a novel multimodal learning framework with
improved modality dropout and contrastive multimodal learning. 2) We demon-
strate the effectiveness and efficacy of the proposed method using large-scale
public clinical datasets for disease detection and prediction. 3) We show the
efficient improvement on a recent CT foundation model at a low cost.

2 Method

The proposed multimodal learning framework is illustrated in Fig. [} We aim to
train a multimodal model Fy(-,) (parameterized by ) that detects or predicts
diseases from medical images and tabular data while being robust to missing
modalities during inference. Our model comprises pretrained unimodal encoders
for processing individual modalities, a lightweight fusion module of multilayer
perception (MLP) to integrate information from different sources, and a task-
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specific head, which is a classifier for the target training (Fig.|1|[a]) or a projector
for pretraining (Fig.[1|[b]). The unimodal encoders remain frozen throughout all
training to reduce additional training overhead.
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Fig.1. Overview of the proposed method for training the multimodal model. (a)
Target training using the simultaneous modality dropout, where the multimodal model
is supervised using unimodal and multimodal inputs simultaneously. (b) Inter-modality
contrastive learning using the multimodal and unimodal representations. The learnable
modality tokens are introduced for improving missingness-aware neural fusion.

Simultaneous modality dropout. The modality dropout simulates that modal-
ity is missing for a patient during training. We consider the task of detecting or
predicting disease from medical images and tabular data as illustrated in Fig. [I]
(a). Given a patient sample, with image z¢ and tabular z¢ modalities, the multi-
modal model Fy(-,-) predicts the probability p(y* | z¢, zi,0) = Fy(z%, z}), where
y* is the associated label. The model is trained by maximizing the log-likelihood
using £°%%¢ = —logp(y® | %, z%,6). We adopt modality dropout [T0/23IT6I25] to
enable robustness to missing modalities. Unimodal predictions, p(y' | z¢,0) =
Fy(x%,0;) and p(y® | xi,0) = Fp(0.,x!,), are obtained by replacing missing
modalities with zero matrices, where the 0. and 0; are the zero metrics for the
image and tabular modalities, respectively. Traditional modality dropout train-
ing L™ = —logp(y’ | {z’};es,0) employs a random sampling function g(-) to
select a subset S = {g(M) € P(M) \ @} of available modalities at each it-
eration, where P(M) represents the power of all modalities M = {¢,t}. The
sampling function ¢(-) was introduced to avoid large computational costs in a
single iteration as the number of modality combinations |P(M)| = 2/M| scales
exponentially [23]. Instead, we propose simultaneous modality dropout, where
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all modality combinations are explicitly supervised without sampling, leveraging
the small number of modalities and the lightweight nature of our fusion module.
Our loss function is defined as Eq. [, where the A is a hyperparameter that bal-
ances term weights. This way, our approach ensures a smoother loss gradient,
leading to more stable training. Since the unimodal encoders remain frozen, we
apply modality dropout at the input of the fusion module to prevent redundant
computation. During inference, the missing modality can be handled as if the
modality is dropped out, which is learned in training.

£omd = —logp(y' |, xk, i, 0) — A D logp(y' | 47, 6) (1)
JEM

Learnable modality tokens. While conventional modality dropout effectively
handled missing modalities during inference, its reliance on fixed zero matrices
(0. and 0;) limited the performance of multimodal learning. Inspired by recent
multimodal methods that employed learnable instructions [II32/T7], we intro-
duce learnable modality tokens E. and F; to replace fixed zero matrices in our
modality dropout strategy. Specifically, the unimodal predictions of the mul-
timodal model Fy(-,-), originally defined as Fp(z¢,0;) and Fp(0.,x,), are re-
placed with Fy(2%, E;) and Fy(E,.,zt,), respectively. This adaptation enhances
the model’s generalization of missing modalities while preserving representa-
tional consistency. The modality tokens are integrated into the inputs of neural
fusion modules for efficiency (shown in Fig. [I]).

Contrastive multimodal fusion. Conventional contrastive learning primarily
focused on unimodal representations to enhance the performance of downstream
tasks [27290T47I35]. In contrast, our method incorporates fused multimodal
representations into contrastive learning, facilitating better cross-modal repre-
sentation binding (see Fig. [1| [b]) to improve both unimodal and multimodal
performance. Following [35], we employ the sigmoid-based contrastive loss for
computational efficiency. We adopt supervised contrastive learning, leveraging
label information, as it has been shown to outperform self-supervised approaches
[35U13]. Let z¢, 2¢, and z} denote the encoded representations for the image, tab-
ular, and image-tabular data of the i-th patient, respectively. For a batch of n
patients with indices N = {1,2,...,n}, we define the contrastive loss between
modalities ¢ and j as Eq. [2} where the a(u,v) = 1 for positive pair (y* = y¥) and
a(u,v) = —1 for negative pair (y* # y). Our approach builds upon conventional
contrastive learning, initially defined as £°" = L£%". Unlike softmax-based con-
trastive learning, which requires separate directional losses between modalities
(i.e., LG + Ef?c"), simoid-based contrastive learning is undirectional, meaning

c,t
ot = L§9". We extend contrastive learning to fused representations, incorpo-
rating multimodal information into the alignment process. Our final contrastive
loss is defined as £ = L& + L% + L{%". This way, the multimodal repre-

sentation z} serves as a robust intermediary between unimodal ones z! and z}
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to improve representation alignment and more effective multimodal fusion.

con 1
ﬁiJ’ = Z Z logl + ea(u,v)(—tz;"-z}’—&-b)’ (2)
ueN veN

3 Experiment

To validate our proposed method, we conducted experiments on two publicly
available datasets: the Multimodal Pulmonary Embolism (PE) dataset [38/9]
and the National Lung Screening Trial (NLST) dataset [22]. The PE dataset
consists of 1,837 chest CT scans from 1,794 patients, with EHRs containing PE
diagnosis results. Among these CT scans, 1,111 (60.48%) are labeled as PE-
positive. Following prior work [38/9], we formulated the PE detection task as a
binary classification problem, utilizing both CT image and tabular data. The
NLST dataset comprises 64,117 chest CT scans from 12,498 patients, each as-
sociated with EHRs. The objective, as outlined in the CT foundation model
demo [33], is to predict future cancer occurrence at one-year and two-year in-
tervals, treating these as independent classification tasks. The dataset includes
868 (6.95%) and 1,438 (11.51%) CT scans labeled as cancer-positive within one
and two years, respectively. Our experimental setup aligns with these objec-
tives, evaluating model performance in PE detection and cancer prediction by
integrating multimodal learning techniques.

Experimental setting. We employed a four-fold cross-validation strategy at
the patient level for both datasets. Within each fold, we further reserved 10%
of the training data for validation. To benchmark our approach, we compared it
against recent unimodal and multimodal baselines. Additionally, we conducted
ablation studies to systematically evaluate the contributions of individual com-
ponents of our proposal. Since our tasks were essentially doing classification,
we utilized two categories of classification evaluation metrics: 1) Probability-
estimation metrics (assess model confidence without thresholding), including
area under the receiver operating characteristic curve (AUROC), average pre-
cision (AP), and the area under the risk-coverage curve (AURC). 2) decision-
making metrics (evaluate binary classification with predefined threshold, e.g.,
0.5), including Matthews correlation coefficient (MCC) and the F-score. We
report the best and second-best results using bold and underlined fonts, respec-
tively. During training, we used the AUROC from validation data to capture the
best model, as it has been shown to be robust to class imbalance [21] For the
PE detection task, we report all the evaluation metrics. In contrast, for cancer
prediction tasks using NLST dataset, we focus on probability-estimation metrics
for clarity and consistency, given the high sensitivity of decision-based metrics
to threshold selection in extremely class-imbalanced settings.

Implementation details. For PE detection, we utilized two unimodal en-
coders, PENet [9] (for CT) and FT-Transformer [5] (for tabular data), followed
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by a lightweight one-layer MLP (for multimodal fusion) and a linear regression
head, which predicted label probabilities. To reduce the computational over-
head, we froze the unimodal encoders during training, updating only the MLP
and head, resulting in an efficient model with only 2.52 M additional training
parameters. The CT images were resized to 256 x 256; the training batch size was
set to 8. In prior PE dataset studies [938], models were trained using 24-slice CT
windows due to computational constraints. At inference, the patient-level pre-
dictions were aggregated using maximum pooling across CT windows. However,
we found that feeding the entire CT directly improved inference performance,
so we adopted full-image training and inference. For the cancer prediction tasks,
we employed the CT foundation model [33] as our image encoder. When we
implemented the CT foundation model as an image-only baseline method, we
followed the demo to train a two-layer MLP to predict the labels using embed-
dings extracted by the CT foundation model. The training batch size was set
to 128. For all tasks, we used SHAP [20] to select the most relevant attributes
in tabular data. We adopted RadFusion’s attributes process and removed dupli-
cates for the PE dataset, and collected cancer-unrelated attributes from official
releases for the NLST dataset. After tuning and ablating, the top-8 (from 1226)
and top-16 (from 36) attributes were selected for the PE and NLST datasets,
respectively. We used AdamW [19] optimizer with 1 x 10~* learning rate and
1 x 10~* weight decay to train our method for 150 epochs. We simply used A = 1
for all experiments, as it demonstrated robustness within the range 0.5 to 2.0.
A fixed random seed was carefully maintained throughout training to ensure a
fair comparison across experiments.

Table 1. Result of PE dataset

Inference

OT Table AUROCtT APt AURC] MCC?T F-scoret
PENet [9] v - 0.758  0.609 0.475 0.207 0.538
PENet 1 [9] 0.778 0.680 0.442 0.379 0.614
Ours t 0.801 0.724 0.422 0.451 0.647
ElasticNet [39] - v 0.758 0.581 0.487 0.370 0.564
FT-Transformer [5] 0.745  0.539 0.510 0.351 0.597
Ours 1 0.751  0.558 0.499 0.352 0.594
DAFT [24] v v 0.739 0.536 0.511 0.334 0.595
DAFT 1 [24] 0.629  0.459 0.566 0.174 0.437
DAFT-64 [24] 0.700 0459 0.566 0.259 0.561
DAFT-64 t [24] 0.616 0.479 0.560 0.139 0.434
TabAttention [6] 0.738  0.551 0.505 0.271 0.565
RadFusion [38] 0.811  0.676 0.438 0.294 0.572
RadFusion 1 [38] 0.819 0.716 0422 0418 0.633
RadFusion (FT) 0.803  0.642 0.454 0.288 0.567
RadFusion (FT) 0.815  0.707 0.426 0.425 0.640

Ours T 0.842 0.775 0.397 0.499 0.676
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PE dataset results. Table [l| represents the performance comparison between
our method and existing approaches, including image-only models (PENet [9]),
tabular-only models (ElasticNet [39] and FT-Transformer [5]), and the multi-
modal models (DAFT [24], TabAttention [6], and RadFusion [38]). We categorize
results based on inference settings: image-only, tabular-only, and image-tabular.
Our method was trained using both image and tabular data while also being
robust to modality missingness during inference. The results show that our ap-
proach outperformed conventional image-only and tabular-only methods. Com-
pared to PENnet, we increased the AUROC and AP from 0.758 to 0.801 and
from 0.609 to 0.724, respectively. While ElasticNet exhibited the best tabular-
only performance due to the limited number of training samples, our method
achieved the best performance in the image-tabular settings. RadFusion, in its
original implementation, utilized PENet and ElasticNet. To ensure a fair com-
parison, we also evaluated a RadFusion variant that replaced ElastiveNet with
FT-Transformer (denoted as RadFusion [FT]). Our method, with only a few
additional training parameters (2.52 M), outperformed Radfusion, improving
image-tabular AUROC from 0.803 to 0.842 and demonstrating superior mul-
timodal fusion efficiency and robustness. Furthermore, the additional training
only cost less than 5 minutes on a Tesla v100 (16GB) GPU, making it a highly
efficient plug-and-play solution.

Table 2. Results of NLST dataset

Cancer in 2 years Cancer in 1 year
AUROCT APt AURC] AUROCT APt AURCJ
CT foundation model [33] 0.729  0.070  0.956 0.700  0.050 0.972

Ours (CT only) 0.732 0.068  0.956 0.780 0.068  0.969
ElasticNet [39] 0.808 0.199 0.938 0.830 0.132 0.962
FT-Transformer [5] 0.837  0.246 0.933 0.925 0.279 0.949
Ours 0.857 0.247 0.931 0.926 0.279 0.949

NLST dataset results. Table[2|represents the evaluation results on the NLST
dataset, comparing our method against the CT foundation model [33], Elastic-
Net [39], and FT-Transformer [5]. We report our model’s performance under
image-only (denoted as Ours [CT-only]) and image-tabular inference settings.
Our method outperformed the CT foundation model in both two-year and one-
year cancer prediction tasks, improving AUROC from 0.729 to 0.732 and 0.700
to 0.780, respectively. When incorporating tabular data, our model achieved the
best overall performance, demonstrating the benefit of our multimodal learn-
ing. Interestingly, we observed that tabular data dominated the prediction in
this dataset, as the performance gap between our image-tabular model and the
tabular-only model was minimal. This suggested that morphometric attributes
in the tabular data provide highly discriminative features for cancer prediction.
Despite this, our approach successfully integrated CT imaging and tabular data,
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offering the best overall performance while improving image-only one at a low
additional training cost. this observation aligns with prior work [7], which demon-
strated the effectiveness of morphometric attributes in contrastive learning for
medical analysis.

Ablation study. To assess the contribution of individual components in our
proposed method, we conducted ablation studies shown in Table [3] For simplic-
ity, we report only AUROC, as it provides a comprehensive evaluation across all
tasks. We evaluated our method across image-only and image-tabular inference
settings. We denote the one-year and two-year cancer prediction tasks as NLST;
and NLST5, respectively. We first train the model using only the standard cross-
entropy loss £%¢, establishing a baseline. The proposed simultaneous modality
dropout £5™¢ slightly improved the conventional one £™¢. The AUROC values
were improved from 0.836 to 0.840 and 0.712 to 0.722 for image-tabular PE de-
tection and image-only NLST5, respectively. We also noticed that the model gen-
erally converged faster when using the proposed simultaneous modality dropout,
reducing the required epochs from about 300 to 50 (6 times faster). This feature
may become more useful when a more costly end-to-end training or tine-tuning
is used. Integrating learnable modality tokens further enhanced the performance
for both £ and £5™¢. Adding conventional contrastive learning £°°" before
target training with £5™¢ and learnable modality tokens further improved the
performance. Finally, replacing £°°™ with the proposed contrastive learning Leon
consistently achieved the best performance across all tasks, regardless of the dif-
ference in scale of encoders in different experiments. These results validated the
effectiveness of the proposed simultaneous modality dropout, learnable modality
tokens, and contrastive multimodal fusion, demonstrating their collective contri-
bution to robust multimodal learning. Although the overall improvements were
observed, the source of the error for the misclassified patients is not clear, which
requires deeper investigation.

Table 3. Ablation study results (AUROCT)

Training Modality Pretraining Image-tabular inference Image-only inference

loss token loss PE NLST. NLST; PE NLSTy NLST:
Lhase / - 0.837 0.847 0.919 / / /
£md - 0.836  0.850 0917 0.797 0.714 0.707
v 0.840 0.855 0.915 0.796 0.728 0.741
£ - 0.838 0.851 0.926 0.800 0.716 0.738
v 0.840 0.855 0.920 0.800 0.722 0.751

Leen 0.842 0.856 0.926 0.800 0.726 0.771
Leon 0.842 0.857 0.926 0.801 0.732 0.780
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4 Conclusion

We introduced a novel multimodal learning framework that integrates modality
dropout with contrastive multimodal pertaining to enhance disease detection
and prediction from CT images and tabular data. Our approach incorporated
learnable modality tokens to improve missing modality awareness and leveraged
fused multimodal representations in contrastive learning for improved alignment
across modality representations. Our method offers a minimal-cost upgrade path
to multimodal learning using any frozen unimodal encoder with high improve-
ment gain. Through evaluations on three multimodal prediction tasks from two
datasets, we demonstrated the effectiveness of our method in both unimodal
and multimodal inference settings, showcasing its practical applicability. From
a clinical application aspect, our method requires only available modalities at
input, functioning seamlessly when modalities are partially available. Further
improvements are anticipated if the model is trained end-to-end. Our framework
is scalable to additional modalities beyond CT and EHR data. Future work will
explore this scalability and investigate its applicability in conjunction with large
language models, particularly the major decoder-only architectures, advancing
the potential of multimodal learning in clinical applications.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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