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Abstract. Thyroid nodules are among the most prevalent endocrine
disorders, with incidence rates increasing in recent years. Ultrasonog-
raphy remains the primary method for thyroid nodule diagnosis due
to its non-invasive nature and cost-e�ectiveness; however, the process
is subjective and skill-intensive. To assist radiologists, Computer-Aided
Diagnosis systems (CAD) have been developed to provide a second opin-
ion. Despite these advancements, the absence of publicly available med-
ical datasets has resulted in inconsistent validation methods, deterring
comparability across studies. This paper introduces ThyroidXL, an open
benchmark dataset for thyroid nodule classi�cation, segmentation, and
detection. With over 11,000 images from more than 4,000 patients, the
dataset�collected and annotated by expert radiologists at the Viet-
nam National Hospital of Endocrinology�stands as the largest publicly
available resource for thyroid nodule diagnosis in terms of both patient
count and image volume. Additionally, we provide multiple deep-learning
baseline models on three key tasks, including malignancy classi�cation,
thyroid nodule detection, and segmentation. The proposed dataset and
benchmark can serve as a foundational resource for advancing CAD
system development, fostering reproducible research, and accelerating
progress in thyroid nodule diagnosis. Our dataset can be accessed at:
https://huggingface.co/datasets/hunglc007/ThyroidXL

Keywords: Thyroid Nodules · Ultrasonography · Deep Learning.

1 Introduction

Thyroid cancer is an increasingly prevalent health issue, ranking seventh in over-
all incident rate and �fth among women in 2022 [1]. Advancements in medical
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technology have allowed early detection and treatment of thyroid cancer, thus
increasing the survival rate. However, the widespread use of diagnostic imaging
also contributes to increased incidence. Therefore, a key challenge for physicians
is to ensure that benign or low-risk patients are not over-treated, which can be
achieved by undertaking a thorough diagnosis.

Two methods are commonly utilized in thyroid cancer diagnosis, including
ultrasonography (US) and �ne needle aspiration cytology (FNAC). The latter
is the gold standard for evaluating thyroid nodules, but the former is more
commonly used due to its accessibility, a�ordability, and ionizing-free nature [2].
However, US interpretation requires a spatial understanding of the anatomy and
accurate recognition of diagnostic-related features [2], making it a demanding,
time-consuming, and subjective process. To standardize US-based classi�cation,
[3] introduced the Thyroid Imaging Reporting and Data Systems (TI-RADS) in
2009, which categorizes thyroid nodules based on their risk of malignancy using
ultrasound features. Over the years, multiple variants were developed, with ACR
TI-RADS [4] emerging as the most widely accepted.

To overcome the limitations of traditional thyroid cancer diagnosis, modern
CAD systems leveraging data-driven algorithms have been developed over the
years, and they have demonstrated near-expert performance [5,6,7,8]. Despite
these advancements, the process of advancing these systems is hindered by a
limited number of publicly available datasets due to the technical, ethical, and
legal factors in medical data collection.

To bridge this gap, we present a new public ThyroidXL (XL stands for
eXpert-Labeled) benchmark dataset for the training and evaluation of CAD tools
in thyroid cancer diagnosis. The dataset consists of 11635 B-mode ultrasound
images from 4093 patients at the Vietnam National Hospital of Endocrinology
over two years, starting from February 2023. Diagnoses were biopsy-con�rmed,
and patient data were anonymized to ensure privacy. Ethical approval was ob-
tained from the Research Ethics Committee, and all patients provided written
consent for research use.

2 Related Work

CAD systems for thyroid cancer rely on high-quality datasets for training and
evaluation. Over the years, several dedicated datasets have been introduced to
support research in this domain, each with unique characteristics, advantages,
and limitations.

The DDTI dataset [9] was the �rst open-access dataset for developing thy-
roid cancer diagnosis, comprising 347 ultrasound images from 299 patients at
the IDIME Ultrasound Department. Being one of the �rst benchmark databases
of US images, the dataset has certain limitations, including a limited sample
size and low image resolution. In 2017, [10] introduced the TG3K dataset, which
contains 3585 images from 16 ultrasonic videos. However, it was designed for thy-
roid gland segmentation rather than thyroid nodule classi�cation. The Stanford
CINE dataset [11] is a more recent open dataset containing 192 cine clips from
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167 patients at the Stanford University Medical Center. The TN-SCUI dataset
[12], released in 2020, includes 3644 images, each from a patient at the Shang-
hai Ruijin Hospital. While the dataset provides valuable annotated samples,
it remains inaccessible for general research due to ethical approval constraints.
In 2021, [13,14] proposed the TN3K dataset, which contains 3493 ultrasound
images from 2421 patients collected between January 2016 and August 2020.
Despite its moderate size, the dataset lacks comprehensive clinical metadata.
Additionally, both the TN3K and DDTI datasets contain handwritten diam-
eter indicators on some images. These markings can partially obscure critical
anatomical structures, potentially introducing bias in model training and a�ect-
ing generalization performance [16]. In 2024, [15]. released a large public dataset
of 8,508 thyroid ultrasound images from 842 patients. However, the limited pa-
tient count raises over�tting concerns. Furthermore, several studies also utilized
thyroid ultrasound datasets, though they remain inaccessible to the broader re-
search community [5,8,16,17]. The lack of accessibility to these datasets restricts
independent validation and benchmarking, underscoring the need for large-scale
thyroid ultrasound datasets.

(a) (b) (c)

Fig. 1. Samples from public datasets. Fig. 1(a) and Fig. 1(b) depict hand-written
marks from the DDTI and TN3K datasets, respectively, while Fig. 1(c) presents a
sample from the ThyroidXL dataset, which contains no hand-written marks.

3 The ThyroidXL Dataset

3.1 Image Acquisition and Annotation

The ultrasound images in our datasets are collected by experienced physicians
(≥5 years in thyroid ultrasound). The selection of patients is conducted before
the study based on the following criteria: (1) normal thyroid function, (2) the
thyroid nodules' diameters exceeding 5mm, and (3) no history of prior interven-
tions, including alcohol injection therapy, radiofrequency ablation, or repeated
aspiration. Before undergoing ultrasound imaging, the selected patients are in-
formed about the study and asked to sign consent forms. The standard DICOM
images are extracted from the video sequences captured using Hitachi Aloka
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Arielta V70 ultrasonic image systems, with care taken to ensure that each image
contains only a single nodule. In cases where multiple nodules are present, we
select the most suspicious one. Images are screened for clarity, avoiding blurring
or motion artifacts, and categorized using the ACR TI-RADS scoring system [4].
Fine-needle aspiration of the thyroid nodules is performed immediately following
image capture under ultrasound guidance. Cytological results are classi�ed us-
ing the Bethesda [18] system for reporting thyroid cytopathology. Most patients
diagnosed with malignant nodules undergo surgical excision, and the excised
nodules are marked by surgeons before being sent for pathological examination
to avoid misidenti�cation. Cytological and pathological results, along with pa-
tient demographic data, are documented to complete the research records.

After acquiring the DICOM images, they are converted into an uncompressed
PNG format and provided to experienced radiologists for annotation. For malig-
nancy classi�cation, labels were directly derived from cytological and patholog-
ical �ndings, eliminating inter-annotator variability. Three board-certi�ed radi-
ologists annotated the images for segmentation. Each image was independently
labeled by two annotators (≥5 years of experience), with 8% of cases resolved by
a third senior radiologist (≥30 years of experience) where con�icts were present.
During the preprocessing stage, the non-ultrasound image regions containing pa-
tient information are cropped, and the patient IDs are remapped to ensure data
con�dentiality. The resulting dataset is used for further analysis.

3.2 Dataset Statistics

Dataset size: Our dataset consists of 11,635 images from 4,093 patients, split
80-20 into training and validation sets. The training set includes 9,541 images
from 3,354 patients, while the validation set has 2,094 images from 739 patients.
As shown in Table 1, the ThyroidXL dataset contains the highest number of
images and patients among publicly available datasets.

Table 1. Number of images and patients comparison among public datasets

No. ThyroidXL DDTI TN3K TG3K TN-SCUI

Images 11635 347 3493 3585 3644

Patients 4093 299 2421 - 3644

Dataset distribution: Fig. 2(a) and Fig. 2(d) illustrate the age distribu-
tion of patients across the training and test sets. The data indicates that most
patients fall within the age range of 30 to 60 years. The major di�erence between
the two sets is the benign-to-malignant ratio, which is approximately 50:50 (386
benign, 353 malignant) in the test set and 65:35 (2,477 benign, 877 malignant)
in the training set. This imbalance in�uences the distribution of TI-RADS cat-
egories across the sets, as shown in Fig. 2(b), Fig. 2(c), Fig. 2(e) and Fig. 2(f).
Additionally, the dataset re�ects real-world epidemiology, with female patients
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outnumbering males by a factor of eight (3,650 females, 443 males), consistent
with GLOBOCAN statistics for Southeast Asia [1].

(a) (b) (c)

(d) (e) (f)

Fig. 2. Training set and test set patients' age and TI-RADS categories distributions

4 Benchmark

In this section, we conduct three types of experiments: malignancy status clas-
si�cation, thyroid nodule detection, and segmentation. For each task, we create
a benchmark of the state-of-the-art deep learning algorithms. In addition to the
common metrics, we also calculate Sensitivity and Specificity image-wise and
patient-wise, as they are crucial performance metrics in medical image analysis.
The formulas are as follows:

Specificity =
True Negatives

True Negative+ False Positives
(1)

Sensitivity =
True Positives

True Positives+ False Negatives
(2)

Speci�cally, to determine the �nal classi�cation at the patient level, we apply
Weighted Majority Voting (WMV) across multiple images from the same
patient. The formula is as follows:

Cfinal = argmax
c

n∑
i=1

wiI(yi = c) (3)

where Cfinal is the �nal classi�cation for the patient, yi represents the classi�-
cation result of image i, wi is the con�dence score of the model for that image,
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Table 2. Performance of Classi�cation Models

Model Accuracy Precision Recall F1-score
Image Patient

Sensitivity Speci�city Sensitivity Speci�city

AlexNet 0.798 0.751 0.847 0.796 0.847 0.756 0.887 0.785

Resnet34 0.825 0.821 0.798 0.839 0.798 0.849 0.819 0.839
Resnet50 0.826 0.793 0.846 0.806 0.846 0.806 0.867 0.806

E�cientNet-B6 0.814 0.796 0.858 0.811 0.858 0.776 0.878 0.780
E�cientNet-B7 0.831 0.809 0.833 0.820 0.833 0.829 0.839 0.878

VGG-11 Batchnorm 0.818 0.781 0.845 0.812 0.845 0.794 0.850 0.847
VGG-13 Batchnorm 0.830 0.796 0.855 0.824 0.855 0.809 0.853 0.824

and I(yi = c) is an indicator function that is 1 if the classi�cation of image i
matches class c, otherwise 0. All experiments are conducted using a DGX node
of 8 Nvidia 40GB A100 GPU.

4.1 Malignancy Status Classi�cation

For the malignancy status classi�cation task, we experiment with models com-
monly used for classi�cation tasks, including AlexNet [19], VGG [20], ResNet
[21], and E�cientNet [22].

Training Procedure: We utilize several modules for the training process,
including PyTorch ⋆, Albumentations ⋆⋆, and Hydra ⋆ ⋆ ⋆. Each model is trained
on input images of size 224Ö224 using the AdamW optimizer [23] for 100 epochs,
with the learning rate set to 5x10−4. Regarding the loss function, the Binary
Cross-Entropy (BCE) is employed.

Metrics: Model evaluation and analysis are performed using standard per-
formance metrics, including Accuracy, Precision, Recall, and F1-score, with F1-
score being the main metric.

Classi�cation Results: The performance of classi�cation models are sum-
marized in Table 2. For each model, we select the two versions that yield the
best results. The best F1-score is 0.824, achieved by the VGG-13 with batch
normalization. This is followed by the E�cientNet-B7 with the F1-score being
0.820. Regarding medical image analysis metrics, both models show equally high
sensitivity and speci�city compared to the other models.

4.2 Thyroid Nodule Detection

For the thyroid nodule detection task, we experiment with six object detec-
tion models: E�cientNet-B3 [22], Faster R-CNN [24], YOLOX [25], Deformable
DETR [26], and CO-DETR [27], employing two backbone architectures, includ-
ing ResNet-50 [21] and Swin-L [28].

Training Procedure: Each model is trained using a speci�c set of hyperpa-
rameters tuned for optimal performance. The number of epochs ranges from 20

⋆ https://github.com/pytorch/pytorch.git
⋆⋆ https://github.com/albumentations-team/albumentations.git

⋆ ⋆ ⋆ https://github.com/facebookresearch/hydra.git
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Table 3. Performance of Object Detection Models

Model mAP mAP@50 mAP@75 Precision F1-score
Image Patient

Sensitivity Speci�city Sensitivity Speci�city

E�cientNet-B3 0.568 0.899 0.638 0.905 0.824 0.756 0.931 0.785 0.940

Faster R-CNN 0.527 0.868 0.577 0.871 0.817 0.769 0.900 0.799 0.928

YOLOX-S 0.570 0.898 0.640 0.894 0.848 0.807 0.917 0.819 0.935
YOLOX-M 0.580 0.904 0.649 0.906 0.866 0.830 0.925 0.873 0.930

Deformable DETR 0.538 0.890 0.584 0.878 0.815 0.760 0.908 0.785 0.951

CO-DETR R50 0.586 0.902 0.661 0.897 0.810 0.739 0.926 0.754 0.953

CO-DETR Swin-L 0.613 0.904 0.702 0.899 0.833 0.777 0.924 0.802 0.935

to 200, depending on convergence. The Stochastic Gradient Descent (SGD) [29]
and the Adam [30] optimizers, combined with weight decay and momentum, are
utilized to optimize models' parameters. For learning rate scheduling, we choose
linear decay and cosine annealing strategies. Data augmentation techniques, in-
cluding random �ipping, rotation, and intensity normalization, are applied to
enhance generalization.

Metrics: The models are assessed using COCO-style [31] evaluation metrics
for object detection, including Mean Average Precision (mAP), mAP@0.5, and
mAP@0.75 [32]. Regarding the classi�cation task, to get the malignancy status
of each image, we extract the class score of the detected object with the highest
con�dence. The classi�cation performance is evaluated using standard clinical
diagnostic metrics similar to section 4.1.

Result: Table 3 summarizes the performance of di�erent models. Among the
evaluated architectures, CO-DETR with a Swin-L backbone achieves the highest
detection accuracy with an mAP of 0.613, mAP@50 of 0.904, and mAP@75 of
0.702. However, its sensitivity (0.777) and speci�city (0.924) are lower compared
to YOLOX-M, which achieves a sensitivity of 0.830 and speci�city of 0.925,
despite having a lower mAP of 0.580.

4.3 Thyroid Nodule Segmentation

For the thyroid nodule segmentation task, we opt for the U-Net [33], and U-
Net++ [34], two deep learning architectures speci�cally designed for medical
image analysis, with ResNet [21] and E�cientNet [22] backbones.

Training Procedure: Frameworks and platforms such as Segmentation
Model Pytorch †, Pytorch, and Albumentations are utilized for the model train-
ing process. The input images and masks are of size 384x480. We use the RAdam
optimizer [35] to train each model for 100 epochs with the learning rate set to
5x10−4.

Metrics: The performance of the segmentation models is evaluated using
standard metrics, including IoU-score and Dice-score, with IoU-score being the
main metric. The speci�city and sensitivity in the segmentation task are calcu-
lated similarly to 4.1. To get the malignancy status from the predicted masks,
we refer to the number of pixels belonging to each class.

† https://github.com/qubvel-org/segmentation_models.pytorch.git
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Table 4. Performance of Object Segmentation Models

Image Patient
Model Backbone IoU Dice Accuracy Precision Recall F1-score

Sensitivity Speci�city Sensitivity Speci�city

Resnet101 0.568 0.644 0.794 0.822 0.709 0.762 0.683 0.977 0.679 0.980
Resnet152 0.576 0.650 0.797 0.815 0.729 0.769 0.685 0.979 0.681 0.981

E�cientNet-B5 0.621 0.697 0.821 0.824 0.783 0.803 0.713 0.982 0.707 0.984
UNet

E�cientNet-B6 0.640 0.716 0.842 0.814 0.856 0.835 0.743 0.982 0.745 0.984

Resnet101 0.566 0.640 0.794 0.804 0.736 0.768 0.669 0.979 0.669 0.981
Resnet152 0.571 0.643 0.784 0.786 0.734 0.759 0.665 0.981 0.658 0.983

E�cientNet-B5 0.648 0.725 0.848 0.819 0.863 0.840 0.755 0.982 0.759 0.984
UNet++

E�cientNet-B6 0.641 0.717 0.838 0.832 0.816 0.824 0.749 0.981 0.752 0.984

Result: Table 4 illustrates the e�ectiveness of various segmentation models.
Overall, the UNet++ with an E�cientNet-B5 backbone yields the best results,
with IoU score, Dice score, Accuracy, and F1-score being 0.648, 0.725, 0.848, and
0.840 respectively. However, its precision, being 0.819, is lower compared to other
models. Furthermore, it also ranks �rst in terms of speci�city and sensitivity.

5 Discussions

In this study, we benchmark several state-of-the-art architectures to establish
baseline performance on our ThyroidXL dataset. For thyroid nodule detection,
CO-DETR with a Swin-L backbone achieves superior detection accuracy, its sen-
sitivity and speci�city are lower than those of YOLOX-M. This discrepancy can
be attributed to the di�erent optimization trade-o�s between object detection
and classi�cation tasks. CO-DETR, being a transformer-based model, empha-
sizes high localization accuracy, which bene�ts the object detection task but may
lead to suboptimal decision boundaries for classi�cation. In contrast, YOLOX-
M, a one-stage detector, balances both detection and classi�cation tasks more
e�ectively, resulting in improved sensitivity and speci�city.

Notably, models often exhibit a trade-o� between high sensitivity and low
speci�city or vice versa. This suggests that while they e�ectively identify be-
nign nodules, they may struggle with detecting malignant ones or the other way
around, leading to either underdiagnosis of malignancies or misclassi�cation of
benign cases. This trade-o� highlights the importance of selecting models based
on clinical priorities, where a balance between sensitivity and speci�city is es-
sential. Additionally, the use of Weighted Majority Voting signi�cantly improves
models' sensitivity and speci�city when evaluating at the patient level. These
�ndings highlight the importance of considering patient-level aggregation when
evaluating diagnostic AI models.

Compared to previous studies [9,10,11,12,13,14,15], the ThyroidXL dataset
o�ers a larger sample size, improved image quality, and rich clinical metadata.
However, the dataset still shows a slight imbalance in the malignant-benign ratio,
which may a�ect model performance. Moreover, models trained on our dataset
might not generalize well to images from di�erent equipment or clinical settings.
Thus, future work should consider data augmentation, resampling, and domain
adaptation strategies to overcome these challenges.
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6 Conclusions

In this paper, we present ThyroidXL, a dataset of ultrasound images speci�cally
designed for thyroid nodule diagnosis. The dataset consists of 11635 ultrasound
images from 4093 patients at the Vietnam National Hospital of Endocrinology.
Additionally, we provide the evaluation of state-of-the-art deep learning models
on three key tasks, including malignancy status classi�cation, thyroid nodule
detection, and segmentation. In addition to commonly used metrics, we com-
pute Specificity and Sensitivity at both the image and patient levels, as these
are critical performance indicators in medical image analysis. Consequently, we
anticipate that the ThyroidXL dataset will serve as a substantial contribution
to advancing research in this domain.
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