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Abstract. Accurate registration between intraoperative 2D images and
preoperative 3D anatomical structures is a prerequisite for image-guided
minimally invasive surgery. Existing approaches for 2D/3D rigid regis-
tration, particularly those for X-ray to CT image registration, primarily
rely on grayscale-based image similarity metrics. However, such metrics
often fail to capture the optimal projection transformation due to their
limited contextual information. To address this issue, we propose a novel
and intuitive correspondence representation: the overlap of multiple cor-
responding Regions of Interest (ROIs). By introducing the differentiable
Dice coefficient computed on the projection image, we establish a direct
link between segmentation and registration within our weakly supervised
2D/3D registration framework. This framework comprises two stagesa
learning-based preoperative stage and an optimization-based intraoper-
ative stageboth of which leverage the ROI-based Dice score as a differen-
tiable supervision signal. Additionally, we integrate automatic segmen-
tation methods (e.g., UNet) and prompt-based methods (e.g., MedSAM)
into the framework to investigate the impact of different segmentation
approaches on registration performances. Furthermore, we validate the
generalization ability of the proposed framework by integrating the ROI-
based similarity with various similarity measures. Extensive experiments
conducted on the DeepFluoro dataset yielded an mTRE of 0.67±1.34
mm, with rotational and translational error values being 0.2±0.5◦ and
1.6±2.9 mm respectively, outperforming existing state-of-the-art meth-
ods. The codes are available at https://github.com/CYXYZ/WSReg.

Keywords: 2D/3D Registration · Segmentation-assisted Registration·
Surgical Navigation.
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1 Introduction

Minimally invasive surgeries, such as femoral osteoplasty [9], hip replacement [4],
spinal needle injection [11], and vascular interventions [20, 16], require precise
localization of target structures intra-operatively. While 2D fluoroscopic X-ray
images enable rapid acquisitions, their projection nature leads to spatial infor-
mation loss [6]. Combining them with pre-operative 3D computed tomography
(CT) scans allows for accurate localization of surgical instruments and interested
anatomical regions [32, 21, 30]. Accurate 2D/3D image registration thus plays an
important role in enabling successful surgical navigation [22, 23].

Traditional registration often relies on digitally reconstructed radiographs
(DRRs), which generates high-quality synthetic X-rays from given CT scans and
sampled rigid transformations [1, 28, 13, 27]. Efficient DRR generators concen-
trate on optimization-based search strategies [13, 10], and new similarity metrics,
such as weighted local mutual information [20] and contour image force summa-
tion [25]. However, these metrics primarily rely on image intensity, providing
limited information. Learning-based methods have been proposed, among which
self-supervised approaches directly regress spatial mappings to predict projection
parameters of perspective images, followed by an optimization process to obtain
the optimal solution [31, 12]. However, training pose regressors typically requires
a large amount of synthetic X-ray image data. Other supervised methods rely on
expert annotations and employ Perspective-n-Point (PnP) algorithms to solve
the mapping relationship [3, 4, 7]. Although these supervised methods can auto-
matically establish correspondences between landmarks and often outperforms
unsupervised methods in terms of accuracy [29, 12], it still demands manual
landmark annotations or incurs substantial computational costs. Moreover, lim-
ited landmark availability or inaccurate annotations may lead to failures in pose
estimation [26, 15].

To alleviate this challenge, inspired by those 3D/3D registration counterparts
[8], we explore to develop an accurate weakly supervised registration approach.
It is well noted that few 2D/3D registration studies leverage segmentation in-
formation. In some scenarios, segmentation of region-of-interest (ROI) provides
sufficient representational capacity, similar to other correspondence representa-
tions [17, 18]. Unlike 3D/3D registration, where spatial transformations can be
directly applied to masks or images for alignment, direct correspondence be-
tween 3D and 2D data via geometric transformations is not feasible, making
operations on fixed segmentation data unworkable. Furthermore, even consider-
ing the DRR process as a mapping between 2D and 3D, the non-differentiable
Dice coefficient prevents gradient-based updates towards the optimal solutions.
To address this issue, we propose an alternative representation using paired
ROIs between the projection images to denote correspondences. Training with
predefined ROI types integrates ROI pairs with known correspondences into the
registration algorithm, providing weak supervision for the task.

In this study, we propose a novel weakly-supervised 2D/3D medical image
registration framework that leverages ROI segmentation information from both
2D input and rendered projected images. We incorporate the differentiable Dice
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Fig. 1: Anatomical Segmentations and Landmarks of Human Hip Bone.
The left panel shows the 3D landmarks(in Dark Purple) and 3D mask; the right
panel shows the corresponding 2D mask.

coefficient as a correspondence representation of the registration within both
learning-based and optimization-based methods. Furthermore, we investigate
the impact of segmentation models, such as MedSAM [19] and U-Net [15], on
registration performances, analyzing their respective strengths and limitations
in the framework. We combined commonly used similarity measures in image
registration with ROI scores to validate the generalization capability of the pro-
posed method. The proposed method achieved an mTRE of 0.67±1.34 mm, with
rotational and translational errors of 0.2±0.5◦ and 1.6±2.9 mm in extensive ex-
periments on DeepFluoro [15], confirming its effectiveness and clinical potential.

Our contributions of this paper are summarised as follows. 1) We have estab-
lished a weakly supervised 2D/3D registration framework, which consists of two
stages including the preoperative training and the intraoperative optimization.
The effectiveness of weak supervision signal of segmentation was demonstrated
in both stages. 2) We have proposed a differentiable search method for opti-
mal projection parameters based on ROI scores by establishing correspondences
between ROI pairs in different perspective images, acquired with automatic seg-
mentation methods (e.g., U-Net) and prompt-based methods (e.g., MedSAM).
3) We have introduced ROI scores into different similarity measures, demon-
strating the strong generalization capability of the weak supervision approach.

2 Method

2.1 Weakly-Supervised 2D/3D Image Registration

ROI Segmentation in X-ray Images. To identify corresponding ROI pairs,
we utilized the DeepFluoro dataset6 and applied leave-one-out cross-validation
to train X-ray segmentation models (U-Net [15] and MedSAM [19]). The hip
skeletal structure is divided into six sub-regions, as shown in Fig. 1, with corre-
sponding X-ray images annotated for each.

6 https://github.com/rg2/DeepFluoroLabeling-IPCAI2020
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Fig. 2: Preoperative Training Framework. The Orange arrows and Teal ar-
rows represent the processes using sampled and estimated poses, respectively.
The right panel depicts the input used for computing the loss function.

Pose-Sampled X-ray Synthesis. We use the rapid DRR generator in [13] to
synthesize X-ray images through vectorized tensor operations. For each patients
hip, multiple rotation vectors r ∈ R3 and translation vectors t ∈ R3 are sampled
in the posterior-anterior (PA) view, generating projection perturbations via the
Lie algebra exponential map Exp([r, t]) → ∆T ∈ SE(3). Using preoperative
imaging, the PA view transformation TPA ∈ SE(3) is pre-established, and the
perturbation-induced pose is given by T = ∆T · TPA with T ∈ SE(3). The
DRR-generated dataset serves as training data for the registration framework,
where only the perturbation needs to be estimated. The DRR process is formally
defined as I = R(V,T), where I : R2 → R is the rendered X-ray image, V :
R3 → R is the patients CT volume, and R(·) denotes the rendering operator[7].

Segmentation-Assisted Rigid Transformation Estimation. Fig. 2 illus-
trates the proposed U-Net-based training process. Given V, pose sampling is
performed to obtain a set of poses T and rendered images I. The goal is
to train an encoder E that takes an X-ray (either real or synthetic) as input
and outputs the projection transformation parameters. To integrate segmen-
tation information, I inputs E and the mask decoder M, which generate a
six-dimensional vector [r̂, t̂] ∈ R6 and segmentation mask M ∈ {0, 1}m×n×6

respectively, where m ∈ N+ and n ∈ N+ represent the mask dimensions. [r̂, t̂]

is then mapped through the exponential map Exp([r̂, t̂]) → ∆T̂ ∈ SE(3) to
compute the estimated perturbation of the projection transformation T̂ ∈ SE(3)
as T̂ = ∆T̂ · TPA. T̂ is then used in the rendering operator to obtain ren-
dered projective image Î = R(V, T̂). The other mask decoder M̃ receives Î and
outputs a confidence matrix M̃ ∈ [0, 1]m×n×6 denotes a normalized probability
map, where each element lies in the range [0, 1]. The encoder E is trained using
a combination of LGEO between T and T̂, LmNCC between I and Î, and LROI
between M and M̃.
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Fig. 3: Intraoperative Registration Framework. The left and right sides
show the registration frameworks based on U-Net and MedSAM. The Black and
Grey arrows indicate constant inputs and parameter updates during the process.

2.2 Segmentation-Assisted Intraoperative Registration

During surgery, the trained encoder E initializes the estimation of real X-ray
projection transformation matrix. The intraoperative registration framework,
shown in Fig. 3, employs two segmentation-assisted schemes, i.e., U-Net-based
and MedSAM-based. In the UNet-based method (left side of Fig. 3), the intra-
operative X-ray image I : R2 → R serves as the fixed image, while the rendered
image from the estimated pose serves as the moving image. I is passed through
two branches: 1) the Mask Decoder M to generate M, and 2) the encoder E
and exponential transformation Exp to obtain the estimated pose T̂. The ren-
dered image Î = R(V, T̂) is then processed by the Mask Encoder M̃ to obtain
M̃. Pose parameters are updated by maximizing LmNCC between I and Î, and
LROI between M and M̃. In the MedSAM-based approach, the only difference
with the UNet-based counterpart is the addition of a bounding box prompt for
segmenting I and Î. Crucially, the trained encoder often brings the initial pose
estimation close to a suboptimal pose, making the use of a fixed Bounding Box
as a prompt for both I and Ĩ during optimization a reasonable approach.

2.3 Loss Function

As shown in Fig. 2, the overall loss function L consists of LGEO, LROI, and
LNCC. LGEO is defined as the geodesic distance between T and T̂, i.e., LGEO =
f
2

√
∥Log

(
R⊤R̂

)
∥2 + ∥(t− t̂)∥2 + ∥Log

(
T−1T̂

)
∥, where f ∈ R+ represents the

camera focal length, and || · || indicates the L1 norm of a vector. For the X-ray
image I (either real or simulated) under a given camera pose, and the rendered
X-ray image Î generated using the predicted pose, LmNCC represents the mean
of the local and global NCC loss between I and Î: LmNCC = 1

2K

∑K
k=1 ρ(IWk

) ·
ρ(ÎWk

) + ρ(I) · ρ(Î), where Wk : R2 → R denotes the k-th sliding window of I
and Î, and K ∈ N+ is the number of windows into which the image is divided.
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Table 1: Comparison with advanced medical image
registration methods.

Baseline mTRE(mm) SRR RE(◦) TE(mm)
DiffDRR [13] 25.08 ± 24.01 26% 10.8 ± 9.6 72.5 ± 63.2

PSSS [31] 4.40 ± 4.63 26% 1.8± 2.0 10.1± 10.0
DiffPose [12] 1.01 ± 3.24 83% 0.4 ± 1.3 2.1± 5.8

Ours 0.67 ± 1.34 ↑ 87% ↑ 0.2 ± 0.5 ↑ 1.6 ± 2.9 ↑

Table 2: Comparison of dice
scores for different segmenta-
tion methods on real and syn-
thetic data.
X-rays U-Net Med-SAM

Real 0.81 ± 0.07 0.85 ± 0.07

Synth 0.80 ± 0.07 0.85 ± 0.06

In general, for any image A : R2 → R, ρ(A) = (A− µ(A))/σ(A) represents the
normalized cross-correlation of the image, where µ(A) = 1

N

∑
(x,y) A(x, y) and

σ(A) =
√

1
N

∑
(x,y) (A(x, y)− µ(A))

2 are the mean and standard deviation of
the image’s pixel values, respectively. Here, x ∈ R and y ∈ R denote the pixel
coordinates, N ∈ N+ represents the number of pixels. Finally, the ROI loss LROI

using the Dice score of the image is defined as = 1
P

∑N
p=1

2
∑
x,y

Mp(x,y)·M̃n(x,y)∑
x,y

(Mp(x,y)+M̃p(x,y))
,

where Mp ∈ R2×2 represents the one-hot encoding of the p-th channel of M, and
M̃p ∈ R2 is the predicted probability map of the p-th ROI extracted from M̃,
P ∈ N+ represents the number of ROI categories. These three loss components
together form the training loss function: L = β1LGEO+β2(1−LROI)+1−LmNCC,
where β1, β2 are hyperparameters. For the optimization process in Sec. 2.2, the
objective function to be minimized is: LmNCC + β2LROI.

3 Experiments and Results

3.1 Datasets, Implementation Details and Evaluation Metrics

Datasets. We evaluate our method on the DeepFluoro dataset, which contains
pelvic CT scans and X-ray images from six cadavers (three males and three
females, aged 5794 years) [15]. Each subject undergoes one CT scan with 24 to
111 X-ray fluoroscopy images, resulting in a total of six CT scans and 366 X-ray
images. The dataset provides intrinsic and extrinsic parameters for each X-ray
system, with annotated landmarks and masks in the CT scans (cf. Fig. 1).
Implementation Details. For E , we use a ResNet18 backbone combined with
a two-layer MLP [12], and train it with the Adam optimizer at a learning rate
of 10−3 for 1300 epochs. The Mask Encoder (cf. Fig. 2 and Fig. 3) follows a six-
level U-Net design [24], with 2×2 convolution for downsampling and transposed
convolution for upsampling, and is trained with the Adam optimizer at 10−1

learning rate for 500 epochs. The Image Encoder, Prompt Encoder, and Med-
Mask Decoder in Fig. 3 follow the MedSAM design [19]. The Box Prompt is
simulated by adding up to 10 pixels of random translation noise to mimic manual
annotation errors. These are trained using the AdamW optimizer at 10−3 for
400 epochs. Intraoperative registration (cf. Sec. 2.2) r and t is optimised using
the Adam optimizer at learning rates of 7.5 × 10−3 and 7.5, respectively, over
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Fig. 4: Comparison with several baseline methods. The Red and Blue
markers represent the 2D projections of 3D landmarks under the estimated and
ground truth poses, respectively. The Purple area indicates the overlap region,
whose larger area indicates better registration accuracy.

Table 3: Comparison of the performance of different objective functions with
(’+’) and without (’-’) LROI.

mTRE(mm) SRR RE(◦) TE(mm)
− + − + − + − +

LocalNCC 2.83 ± 6.33 2.15 ± 6.38 72% 78% 1.1 ± 2.4 0.7 ± 1.9 6.9 ± 14.3 5.4 ± 13.3

GlobalNCC 4.39 ± 4.71 3.51 ± 3.68 24% 27% 1.9 ± 2.0 1.5 ± 1.5 10.1 ± 10.1 8.5 ± 9.0

GradientNCC 11.12 ± 7.35 9.95 ± 7.39 4 9% 4.0 ± 2.2 3.5 ± 2.3 46.8 ± 25.6 40.1 ± 28.2

SSIM 13.62 ± 8.63 5.55 ± 5.14 2% 10% 5.6 ± 3.2 2.1 ± 1.7 48.7 ± 26.2 14.7 ± 13.3

MSE 9.84 ± 6.46 9.23 ± 6.12 0% 1% 4.2 ± 2.1 3.9 ± 2.2 31.1 ± 19.9 29.7 ± 19.1

MAE 10.38 ± 6.61 9.85 ± 5.92 1% 1% 4.3 ± 2.2 4.1 ± 2.0 34.8 ± 21.2 32.3 ± 19.3

PSNR 10.21 ± 6.50 10.13 ± 6.75 0% 0% 4.3 ± 2.3 4.2 ± 2.2 33.9 ± 20.2 33.9 ± 21.3

250 epochs. The hyperparameters appeared are β1 = 10−2 and β2 = 10−1. All
experiments are conducted on an RTX 4090 Ti GPU.
Evaluation Metrics. Three evaluation metrics are utilised: (1) mean Tar-
get Registration Error (mTRE) defined as the average Euclidean distance be-
tween ground truth (GT) and estimated 3D landmark projections, (2) rota-
tional/translational errors (RE/TE) defined as vector norms of the differences
between GT and estimated rotation and translation vectors, and (3) Submillime-
ter Registration Success Rate (SRR) defined as the ratio of registration trials
with mTRE < 1mm [12, 5].

3.2 Experimental Results

Analysis of Real-to-sim Segmentation. As shown in Sec. 2.1, while the
segmentation model is trained on real X-ray images, the registration model uses
DRRs, making this a real-to-simulation task. A key question is whether the
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segmentation model can perform the real-to-sim X-ray image segmentation task
effectively. Table 2 shows the Dice scores for segmentation on real and synthetic
X-ray images using two segmentation methods, evaluated via leave-one-out cross-
validation. The synthetic X-rays are rendered based on the real X-ray projection
poses. Column-wise results indicate that the impact of using synthetic X-rays
on ROI extraction performance is negligible.
Comparison with State-of-the-Art Methods. We perform a fair compar-
ison with PSSS [31] and DiffPose [12], and an admittedly less fair compari-
son with the purely optimization-based method DiffDRR [13]. Both PSSS and
DiffPose train a pose regression network to initialize pose parameters, followed
by optimization-based fine-tuning. Our method outperforms all baselines across
four evaluation metrics (cf. Table 1). Fig. 4 shows qualitative results of 3D land-
mark projections. Additionally, we compare two segmentation-assisted registra-
tion variants under the same pose initialization conditions. Although MedSAM
performs better in ROI segmentation, it yields an mTRE of 0.95±3.01 mm, an
SRR of 84%, an RE of 0.27±0.61◦, and a TE of 3.15±1.70 mm across all data.
In contrast, the U-Net-based method achieves better registration results, with
an mTRE of 0.74±1.97 mm, an SRR of 85%, an RE of 0.25±0.50◦, and a TE
of 1.64±2.96 mm. This may be because MedSAM’s box prompt for DRRs is
based on real image input. While the poses of DRRs and the real image are
similar, they are not identical, resulting in greater noise in the box prompt used
for DRRs. In contrast, the U-Net-based method avoids this issue. To validate
the broad applicability of the segmentation-assisted registration paradigm, we
performed ablation experiments using commonly used similarity measures for
image registration [2, 12, 14]. Table 3 confirms the effectiveness of incorporating
this auxiliary information into the registration procedure.
A Case Study of 2D/3D Registration of the Pelvis. We selected the pa-
tient ID 18-2799 to evaluate the impact of segmentation on the registration.
Images were segmented using U-Net and MedSAM. MedSAM outperforms U-
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Net in segmentation (cf. Fig. 5). Based on these, we applied both MedSAM- and
U-Net-based segmentations to the real input images, while using U-Net-based
segmentation for the rendered images during optimization. The registration out-
comes, shown on the right of Fig.5, revealed no improvement with MedSAM,
despite its superior segmentation. This suggests that segmentation-assisted reg-
istration depends not only on segmentation accuracy but also on consistency.

4 Conclusion

We propose a novel weakly supervised 2D/3D registration framework leveraging
segmentation from 2D projections. By incorporating a differentiable dice score
into both learning-based and optimization-based pipelines, our method achieves
accurate and generalizable registration. Furthermore, we demonstrate that seg-
mentation models provide effective supervision and that combining ROI-based
and conventional similarity metrics enhances registration accuracy. Experiments
on the DeepFluoro dataset confirm our methods competitive, state-of-the-art
performance and offer insights into 2D/3D registration.
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