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Abstract. Generative models enhance neuroimaging through data aug-
mentation, quality improvement, and rare condition studies. Despite ad-
vances in realistic synthetic MRIs, evaluations focus on texture and per-
ception, lacking sensitivity to crucial morphometric fidelity. This study
proposes a new metric, called WASABI (Wasserstein-Based Anatomi-
cal Brain Index), to assess the morphometric plausibility of synthetic
brain MRIs. WASABI leverages SynthSeg, a deep learning-based brain
parcellation tool, to derive volumetric measures of brain regions in each
MRI and uses the multivariate Wasserstein distance to compare distri-
butions between real and synthetic anatomies. Based on controlled ex-
periments on two real datasets and synthetic MRIs from five generative
models, WASABI demonstrates higher sensitivity in quantifying morpho-
metric discrepancies compared to traditional image-level metrics, even
when synthetic images achieve near-perfect visual quality. Our findings
advocate for shifting the evaluation paradigm beyond visual inspection
and conventional metrics, emphasizing morphometric fidelity as a crucial
benchmark for clinically meaningful brain MRI synthesis.
Our code is available at https://github.com/BahramJafrasteh/wasabi-mri.

Keywords: Wasserstein Distance · Brain MRI Synthesis · Generative
Models · Anatomical Fidelity.

1 Introduction

Generative models that can synthesize brain MRIs have recently attracted in-
creasing attention in neuroimaging studies as they have the potential to aid
in disease progression prediction, counterfactural generation, clinical education,
and data augmentation [23,2,9,24]. Despite substantial efforts devoted to design-
ing generative architectures, how to effectively evaluate the quality of generated
samples remains underexplored in the neuroimaging domain.

https://github.com/BahramJafrasteh/wasabi-mri
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Early brain MRI generative models, primarily based on VAEs or GANs [17,2],
often produced low-resolution, blurry, noisy, and artifact-prone images due to al-
gorithmic and computational limitations. To quantitatively assess image quality,
studies often employed metrics commonly used in the computer vision commu-
nity, such as Fréchet Inception Distance (FID) [15], Multi-Scale Structural Sim-
ilarity Index (MS-SSIM) [26], and Maximum Mean Discrepancy (MMD) [12].
These metrics quantify differences between real and synthetic images based on
distributional, textural, and perceptual characteristics, often in a feature space.
These metrics are often adopted to support conclusions drawn from visual in-
spection. In fact, given the general poor quality of early synthetic MRIs, visual
inspection alone can easily distinguish real from fake MRIs and gauge realism
between models [29].
With recent advances in generative models, studies have gradually converged
to producing brain MRIs with “near-perfect” visual quality [18,28,20]. Subtle
anatomical inaccuracies from these synthetic MRIs become harder to detect by
human experts or existing metrics. For example, in a user study [18], neuroradiol-
ogists were only able to distinguish between real and fake MRIs 70% of the time,
and they were no longer able to reliably judge which generative models produce
more realistic brain MRIs. This progress calls for a paradigm shift in evaluation
protocols. Beyond measuring image quality, model evaluation should assess how
the generated images reflect true anatomy (e.g., whether the cortical thickness
of the frontal region falls in a typical distribution of real data). We argue that
visual inspection and traditional metrics lack sensitivity to morphometric differ-
ences. Instead, a new summary statistic that focuses on morphometric fidelity
should be adopted to guide the development of generative models toward pro-
ducing clinically meaningful synthetic MRIs.
To achieve this goal, we propose an efficient metric called Wasserstein-Based
Anatomical Brain Index (WASABI). To measure morphometric discrepancy be-
tween two sets of MRIs, WASABI first applies SynthSeg, a deep learning brain-
parcellation tool, to derive regional volumetric measures in each MRI. Then,
WASABI measures the multivariate Wasserstein distance between the two dis-
tributions of high-dimensional brain measures. To test its sensitivity in detecting
morphometric distances between MRI datasets in a controlled setting, we create
4 ways of partitioning real MRIs of the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset, where we know the ground-truth ranking of morphometric
discrepancies across partition scenarios. Compared to traditional metrics, only
WASABI aligns with the correct rank with well stratified morphometric distances
across data partition scenarios. Finally, based on evaluating distances across two
real MRI datasets and five generative models, only WASABI indicates the real
MRIs have higher morphometric fidelity compared to synthetic MRIs, whereas
other distance metrics tend to be biased by discrepancy in image appearance.
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Fig. 1. Wasserstein-Based Anatomical Brain Index (WASABI): To measure the
anatomical fidelity of a set synthetic MRIs, we compute their distance to a reference
dataset of real MRIs by applying SynthSeg to derive regional morphological measures
of the two datasets. Then WASABI is computed as the Wasserstein distance between
the two multivariate distributions of brain measures. The quality control scores derived
by SynthSeg are used to identify low quality images.

2 Methods

2.1 Common Metrics for Evaluating Synthetic MRIs

Synthetic MRI quality metrics measure a certain type of distance between syn-
thetic and real data. For example, FID (Fréchet Inception Distance) [15] com-
pares the distribution of features between real and synthetic images. It uses a
pretrained Inception network to extract features, models them as multivariate
Gaussians, and computes the Fréchet distance between these two distributions,
with lower scores indicating higher similarity and better image quality. MS-
SSIM (Multi-Scale Structural Similarity Index) [26], on the other hand, eval-
uates the structural similarity between images at multiple scales by analyzing
luminance, contrast, and texture. Higher values indicate greater perceptual simi-
larity, making it useful for assessing fine details in medical images. Lastly, MMD
(Maximum Mean Discrepancy) [12] is a statistical measure that compares the
distributions of two datasets by computing the difference in their mean em-
beddings in a reproducing kernel Hilbert space. Lower values suggest that the
generated images better align with the real data distribution. All the above
metrics measure image-level or representation-level distances but do not assess
anatomical fidelity.

2.2 Quality Metric Based on Morphometric Similarity

Now we introduce a simple and efficient metric, WASABI, the first metric ex-
plicitly designed to assess whole-brain morphometric plausibility of synthetic
brain MRIs. WASABI measures “anatomical distance” by comparing a set of
morphometric features between a set of generated images and a reference real
dataset (Figure 1). In particular, we use SynthSeg [3], a pre-trained deep learn-
ing tool, to derive volumetric measures associated with 68 cortical regions and
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32 subcortical regions in each MRI. We choose SynthSeg over traditional MRI
processing pipelines because it is optimized for efficient processing (less than
30 seconds processing time using GPU compared to 10+ hours of processing
time by traditional Freesurfer). Another key advantage of SynthSeg lies in its
contrast-invariant training, which enhances its adaptability across different MRI
sequences and scanner types. For simplicity, we average the left and right hemi-
sphere measurements, resulting in 52 bilateral volumetric measures (although
our approach can be easily extended to other types of measures like curvature
and cortical thickness). To compare these regional measures between real and
synthetic data, prior works have used univariate Cohen’s d to measure the dis-
crepancy in each brain region separately [18,27]. This approach results in many
separate distance scores and cannot provide a unified whole-brain summary or
capture multivariate anatomical coherence.
Here, we propose to generate a holistic scalar summary score to intuitively quan-
tify the morphometric distance in a high-dimensional space. Specifically, we first
normalize each regional volume measure by the total intracranial volume to
remove the effect of head size. Let X ∈ RN×52 be the set of normalized mor-
phometric measures derived from the N synthetic MRIs and Y ∈ RM×52 be the
set of normalized morphometric measures obtained from a reference dataset of
M real MRIs, we assume that both X and Y follow Gaussian distributions, i.e.,
X ∼ N (µX , ΣX) and Y ∼ N (µY , ΣY ), where µX and µY represent the mean
of the two distributions, and ΣX and ΣY denote their covariance matrices. To
quantify the morphometric similarity between these two distributions, we com-
pute the squared Wasserstein distance [25] between their respective multivariate
Gaussian approximations:

W 2
2 (X,Y) = ∥µX − µY ∥22 + Tr

(
ΣX +ΣY − 2

(
Σ

1/2
X ΣY Σ

1/2
X

)1/2
)
, (1)

where Tr(·) refers to the matrix trace operator. Compared with other statistical
distances (e.g., KL or JS divergence), Wasserstein distance is a true metric, i.e.,
symmetric and satisfying triangle inequality.

By assuming Gaussian distributions as in FID [15], the computation of the
Wasserstein distance becomes extremely efficient, as it reduces the problem to
simple matrix operations without requiring iterative numerical optimization of
the optimal transport problem (O(d3) complexity for computation of the square
root of the covariance matrix with dimension d). This makes the distance calcu-
lation both fast and computationally scalable, especially for large-scale datasets.
Lastly, SynthSeg also produces a QC score indicating the reliability and accuracy
of the gray matter segmentation. Based on our experimental results, we explain
in the next section how to leverage the QC score and our proposed WASABI
metric to generate insights into the quality of synthetic MRIs.

3 Experimental Configurations

This section describes our experiments on testing WASABI using two real MRI
datasets and five state-of-the-art (SOTA) brain MRI generative models.
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3.1 Real Data Experiments on ADNI.

Evaluating the validity of an MRI-quality metric is inherently challenging as
there is no ground-truth in knowing which generative model is morphometricly
more similar to real data. Therefore, before investigating the morphometric plau-
sibility of synthetic MRIs, we first validated the soundness of our metric in a
controlled scenario based on real data. We utilized T1-weighted MRI data from
ADNI 1, 2, 3, and GO cohorts [19]. All scans underwent skull stripping and
segmentation using SynthSeg [3], and transformed into the MNI standard coor-
dinate system [6]. A total of 11,436 T1 images from 1,395 patients (696 males
and 699 females, aged 55 to 91.4 years) successfully passed through our pipeline.
For this analysis, we removed 180 images with a gray-matter QC score below
0.7 (below the 1.5x interquartile range from the first quartile) to ensure the
credibility of SynthSeg measures. Note, we removed these low quality images
because they were trivial to detect both visually and by all metrics. We focused
the following analysis on high-quality synthetic images where human assessment
becomes unreliable and a good quantitative metric is most needed.

Next, we constructed two subsets of images from ADNI in 4 different scenar-
ios, measured the distance between the two subsets in each scenario, and ranked
the distance across the 4 scenarios. The first scenario was to separate the dataset
based on sex (Males vs. Females). The second was to compare images from nor-
mal controls with images with mild cognitive impairment (NC vs. MCI). The
third was to compare NC subjects to individuals with Alzheimer’s disease (NC
vs. AD). Lastly, as a reference comparison, we randomly split the NC images
into two subsets and measured the within-cohort distance (NC vs. NC). These
controlled subsets allow us to examine how well a metric captures meaningful
morphometric variations before applying it to synthetic data. Specifically, given
the nature of the aging and cognitive impairment, we anticipate that the distance
between NC vs. NC would be the smallest and the distance between NC vs. AD
would be the largest. Based on the effect sizes reported in the prior literature
[13,22], we also hypothesize that the distance between males and females falls
between NC vs. MCI and NC vs. AD.

Given any two subsets of MRIs from ADNI, we randomly sampled 500 images
from either subset (so that our distance estimate was not biased by sample size
variations) and computed WASABI, MS-SSIM, FID, and MMD. Similar to [24],
we used the 101-layer version of MedicalNet3D [8] as the feature extractor for
FID and MMD computation in all experiments. In each of the four comparison
scenarios, we repeated the above random sampling 1000 times to generate a
distribution for the distances.

3.2 Comparing Morphometric Realism of Generative Models

Next, we assessed the effectiveness of the proposed metric in evaluating five
SOTA brain generative models. After a careful literature review and exten-
sive testing of existing models, we identified 5 models that can generate high-
resolution 3D MRI volumes with good visual quality (see Figure. 3). We excluded
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models that only generate low-resolution or with poor image quality (blurry,
noisy, or with artifacts). Those synthetic MRIs are obviously anatomically in-
accurate and cannot be successfully used by any processing pipeline (including
SynthSeg). To make the comparison fair, we only focused on image generation
from scratch and excluded conditional generative models that generate samples
based on an existing real MRI [10,21]. The chosen models are:
Latent Diffusion Models (LDM): LDM was trained on the UKbiobank
(UKB) dataset [4,5]. We utilized 1000 synthetic MRIs with age > 50 years
randomly sampled from the 100,000 Synthetic T1 images released by [20].
Hierarchical Amortized GAN (HA-GAN) [23]: HA-GAN employs a dual-
branch generator that combines low-resolution full-volume synthesis with
stochastic high-resolution sub-volume sampling. We used a released model pre-
trained on the GPS dataset [16] to generate 1000 synthetic MRIs.
BrainSynth [18]: BrainSynth is a metadata-conditioned generative model de-
signed to synthesize anatomically plausible 3D brain MRIs by incorporating
subject-specific attributes, ensuring realistic structural variability. It was trained
on a multi-site dataset, including the ADNI [19] and the National Consortium
on Alcohol and Neurodevelopment in Adolescence (NCANDA) [7]. We used their
released pre-trained model to generate 1000 MRIs.
MedSyn [28]: MedSyn is a generative model that synthesizes high-quality 3D
CT images based on textual descriptions while incorporating anatomical aware-
ness to preserve structural accuracy. MedSyn was originally trained on CT im-
ages. We used a variant of the model for MRI synthesis pre-trained on the same
multi-site dataset as BrainSynth.
Med-DDPM [11]: Med-DDPM is a diffusion-based generative model designed
for high-resolution 3D medical image synthesis. It utilizes a cascaded denoising
process to iteratively refine synthetic MRI volumes, ensuring high anatomical
fidelity and structural consistency. Med-DDPM was trained using unnormalized
clinical brain MRI without skull stripping. It requires whole-head masks to gen-
erate a synthetic MRI. We used a pre-trained version of Med-DDPM to generate
1000 synthetic MRI volumes from randomly selected masks.
Given that the above models were trained on different datasets, we incorpo-
rate another real dataset so that we can evaluate the distance between real and
synthetic data and between the two real datasets. Specifically, we randomly se-
lected 1000 MRIs from UKB [4,5], which consists of high-quality T1-weighted
MRI scans [1] collected from a diverse cohort of participants across the UK
aged between 40 and 69 years-old. Finally, we used the same data processing
procedures to derive the distribution of FID, MMD, MS-SSIM, and WASABI
between synthetic and UKB data (i.e., 500 real vs. 500 synthetic MRIs, repeated
1000 times). Lastly, we also computed the distance between the two real datasets
(UKB vs. normal controls in ADNI) as well as the within-UKB distance (distance
between two halves of the UKB samples split randomly).
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Fig. 2. Distribution of WASABI (ours), MMD, MS-SSIM, and FID between two subsets
of real MRIs of ADNI separated by AD vs. NC, males vs. females (sex difference), MCI
vs. NC, and NC vs. NC (two random subsets of NC).

4 Results and Discussion

Results on ADNI. Figure 2a-d shows the distribution of FID, MMD, MS-
SSIM, and WASABI for measuring the morphometric similarity in the four com-
parison scenarios described in Section 3.1. An effective metric should be capable
of clearly distinguishing between distributions, with large separation reflecting
the increasing morphometric differences across the groups. Aligning with our
expectation, only our metric, WASABI, shows a clear separation between the
distributions. The within-NC distances, regarded as the reference “null distri-
bution” of the metric, were the smallest as the difference was only due to the
random split of a homogeneous cohort. The AD-NC distance shows the greatest
divergence from this reference value, suggesting a severe anatomical deterioration
associated with brain atrophy. Meanwhile, the morphometric distances associ-
ated with MCI and sex difference were moderate but still detectable (significantly
larger than the reference distribution of NC-NC).

The other three metrics were not as sensitive as ours in identifying mor-
phometric differences. For FID and MMD, the distributions of MCI-NC and
sex difference significantly overlap with the reference distribution of NC-NC,
suggesting that overall the MCI and sex effects on morphometric changes were
not detectable based on these two metrics. Lastly, MS-SSIM introduced more
overlap between the four distributions than WASABI and incorrectly ranked
the distributions: the MCI-NC distance and between-sex distance were smaller
(higher similarity) than the reference NC-NC distance, violating anatomical re-
ality. These results collectively show that WASABI was the only metric that
reliably measured morphometric differences between cohorts and, therefore, use-
ful for examining the morphometric fidelity of synthetic MRIs.

Results on Generative Models. Figure 3 visualizes samples generated
by the five models, confirming that the synthetic MRIs are visually realistic
compared to real data in ADNI and UKB. Examining the QC scores of all
images (Table 1) revealed that BrainSynth and MedSyn could synthesize MRIs
with equal or even better quality than the real data of ADNI, indicating the need
for further anatomical assessment beyond perceptual assessment. In practice, we
found that when the QC score was low, it became trivial for all metrics to identify
difference between real and synthetic MRIs. We, therefore, only used images with
QC > 0.7 (the threshold used for the ADNI analysis) from each dataset to derive
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Fig. 3. Axial, Coronal, and Sagittal views of a random sample from five generative
models and two real datasets (ADNI and UKB).

the distance metrics. Med-DDPM was omitted in the following analysis as most
samples failed QC. According to Table 1, our proposed WASABI was the only
metric suggesting the real data in ADNI had the smallest distance to UKB while
all synthetic MRIs were less realistic in terms of morphometric similarity. The
worse metric recorded for LDM and HA-GAN also aligned with prior findings
in [18,27]. Not surprisingly, generative models with higher QC scores tended
to have better WASABI scores. On the other hand, FID and MMD yielded
similar results, showing that the distance between synthetic samples from LDM
and the real UKB MRIs was even smaller than the distance between two real
datasets. Given that LDM was the only model trained on UKB, our results
suggest that instead of focusing on morphometric realism, FID and MMD might
only capture differences in image perceptual representations, which were largely
biased by site/scanner differences. Lastly, MS-SSIM could not effectively stratify
the quality of different generative models and incorrectly indicated that the real
ADNI data had the largest distance to UKB compared to synthetic MRIs.

Table 1. Left: SynthSeg QC scores of real or synthetic MRIs; Right: MS-SSIM, FID,
MMD, and WASABI between each dataset and UKB. The first row (highlighted in
gray) records within-UKB distance, regarded as the reference “null” value.

Dataset QC Distance w.r.t. UKB
MS-SSIM FID MMD WASABI (Ours)

UKB 0.78(0.01) 0.962(0.000) 0.04(0.029) 0(0.003) 0.1(0.019)
ADNI (NC) 0.73(0.02) 0.879(0.001) 19.88(0.898) 8.03(0.301) 2.39(0.176)

MedSyn 0.77(0.02) 0.889(0.001) 27.33(0.569) 13.15(0.282) 3.29(0.274)
BrainSynth 0.77(0.01) 0.885(0.001) 30.98(0.418) 14.78(0.193) 5.03(0.33)
LDM 0.711(0.02) 0.888(0.001) 11.08(0.444) 5.16(0.197) 12.26(0.504)
HA-GAN 0.66(0.03) 0.882(0.000) 60.13(0.412) 29.23(0.199) 22.63(0.461)
Med-DDPM 0.61(0.08) – – – –
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5 Conclusion

In this study, we proposed a novel metric for evaluating the anatomical real-
ism of synthetic brain MRIs generated by advanced generative models. While
traditional image-level metrics like FID, MS-SSIM, and MMD have been com-
monly used, they fall short in assessing the true morphometric fidelity needed
for clinical applications. As visual quality improves, it is essential to focus on
how well synthetic MRIs reflect real brain anatomy. We introduced WASABI,
a more objective and scalable metric for quantifying morphometric realism and
guiding generative model development. Our results suggest that WASABI can
better capture subtle morphometric differences and help advance the creation
of synthetic MRIs with real clinical utility. Several limitations should be noted.
First, the WASABI metric assumes Gaussianity of brain volumetric measures.
Although this assumption was confirmed on the UKB data by the Henze–Zirkler
test [14] (p-value = 0.24), its generalizability needs to be tested on other datasets
and brain measures. Second, to increase clinical relevance, WASABI needs to be
tested and extended to MRIs with pathology, e.g., patients with severe brain
atrophy or tumors.
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