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Abstract. Uncertainty quantification is necessary for developers, physi-
cians, and regulatory agencies to build trust in machine learning predic-
tors and improve patient care. Beyond measuring uncertainty, it is crucial
to express it in clinically meaningful terms that provide actionable in-
sights. This work introduces a conformal risk control (CRC) procedure
for organ-dependent uncertainty estimation, ensuring high-probability
coverage of the ground-truth image. We first present a high-dimensional
CRC procedure that leverages recent ideas of length minimization. We
make this procedure semantically adaptive to each patient’s anatomy and
positioning of organs. Our method, sem-CRC, provides tighter uncer-
tainty intervals with valid coverage on real-world computed tomography
data while communicating uncertainty with clinically relevant features.
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1 Introduction

Deep learning predictors are becoming ubiquitous in solving inverse problems
in medical imaging, with remarkable performance across diverse modalities and
organ systems. Point predictors, however, are limited in their ability to quan-
tify uncertainty, as is often necessary for developers, physicians, and regulatory
agencies to verify the safety and reliability of these models in real-world clinical
settings. For example, it has been shown that diffusion models can hallucinate
the details of a patient’s anatomy [29,33], and robust notions of predictive un-
certainty could ameliorate these issues. At the same time, several studies have
highlighted the benefits of including uncertainty estimates in computer-aided de-
cision making processes [22,11,21,27]. This motivates communicating uncertainty
in a clinically informed or clinically relevant manner.

Conformal risk control (CRC) [4] addresses the challenges of measuring the
uncertainty of black-box systems without assuming a predictive distribution,
having found numerous applications in medicine [14,3,17,28,2]. In imaging, CRC
constructs pixel-wise intervals by starting from heuristic notions of uncertainty
(e.g., quantile regression [16], MC-Dropout [13], or variance of the samples from
a diffusion model [28]), and then conformalizing the resulting sets to achieve
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risk control. How to minimize interval length in high-dimensional settings is the
subject of ongoing research [15,5,7,24].

In this work, we observe that patients’ anatomies vary in size, shape, and
positioning of organs, and these variations may unintentionally inflate interval
length. We propose to construct organ-dependent uncertainty intervals that en-
compass semantic structures beyond pixels. We achieve this by extending the
CRC-equivalent of the K-RCPS procedure [28], minimizing the mean interval
length via convex optimization. Not only does our method, sem-CRC, provide
tighter intervals, but it can also guarantee the same level of risk control for
each organ rather than cumulatively over a scan. Our work is related to SG-
RCPS [12], who study organ-wise risk control in radiotherapy. Here, we focus on
computed tomography (CT) data, and our procedure is technically novel. First,
we study mean interval length minimization. Second, sem-CRC computes a se-
mantic uncertainty vector whose entries correspond to different organs, whereas
SG-RCPS outputs a single scalar that controls all organs-wise risks [18]. We
evaluate our method on quantile regression for CT denoising and a simple FBP-
UNet reconstruction pipeline using two real-world datasets: TotalSegmentator
[32] and FLARE23 [20]. Our contributions apply broadly to any imaging inverse
problem and any predictor with a heuristic notion of uncertainty.

2 Background

Recall that in inverse problems, we aim to retrieve an underlying signal X ∈ X
from measurements Y ∈ Y, where Y = A(X) and the operator A : X → Y
cannot be directly inverted (e.g., due to being ill-posed or affected by noise).
Herein, we let X be the space of images with d pixels, i.e. X ⊆ [0, 1]d.

Quantile regression. A common approach to solving inverse problems is to
train a point predictor f : Y → X that minimizes a loss function L(f(y), x)
over a dataset {(X(i), Y (i))}ni=1 of ground-truth signals with their measure-
ments. For example, if L is the squared error then f(Y ) ≈ E[X | Y ]. Differ-
ently, quantile regression trains a set predictor g : Y → 2X such that ∀j ∈ [d],
g(y)j = [q̂α(y)j , q̂1−α(y)j ] where q̂t(Y )j is the estimate of the t-level quantile
of P[Xj | Y ], which can be learned by minimizing the pinball loss [16]. Thus,
quantile regression provides an estimate of uncertainty with intervals length.

Conformal risk control (CRC). The goal of conformal risk control [4] is to
post-process a fixed set predictor g to bound the expectation of its error. More
formally, denote {gλ}λ∈R≥0

the family of nested predictors with

gλ(y)j = [q̂α(y)j − λ, q̂1−α(y)j + λ], (1)

and let ℓ(gλ(y), x) be any bounded, non-increasing function of λ. Following prior
work [2,28], we will consider the proportion of ground-truth pixels that fall out-
side of their intervals, i.e.

ℓ01(gλ(y), x) =
1

d

∑
j∈[d]

1{xj /∈ gλ(y)j}, (2)
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which is monotonically non-increasing in λ ∈ R≥0 and bounded by 1. Then, for
any tolerance ϵ > 0, one can find the smallest parameter λ̂ that controls the loss
in (2). In particular, given a calibration set Scal = {(X(i), Y (i))}ncal

i=1 , and a test
point (X,Y ) of exchangeable observations independent of g, the choice of

λ̂ = inf

{
λ ∈ R≥0 :

ncal

ncal + 1
ℓ̂01cal(λ) +

1

ncal + 1
≤ ϵ

}
(3)

where ℓ̂01cal(λ) = 1/ncal
∑

(x,y)∈Scal
ℓ01(gλ(y), x) guarantees that

E[ℓ01(gλ̂(Y ), X)] ≤ ϵ, (4)

where the expectation is taken over Scal and (X,Y ).

High-dimensional risk control. As noted by [28], using the same scalar λ
for all pixels inflates the mean interval length of the conformalized sets. To
overcome this limitation, they propose to assign each pixel to one of K groups
with some shared statistics. More precisely, they consider a partition matrix
M ∈ {0, 1}d×K , and use a vector-valued parameter λK = [λ1, . . . , λK ] ∈ RK

≥0

such that λ = MλK ∈ Rd
≥0 and

gλ(y)j = [q̂α(y)j − λj , q̂1−α(y)j + λj ]. (5)

Then, for a fixed anchor point λ̃K ∈ RK
≥0, choosing

λ̂ = inf

{
λ ∈ M λ̃K + ω1d, ω ∈ R :

ncal

ncal + 1
ℓ̂01cal(λ) +

1

ncal + 1
≤ ϵ

}
(6)

controls risk as in (4). Note that [28] introduced their method for risk controlling
prediction sets (RCPSs) [6], but it applies to CRC as well. The anchor λ̃K ∈ RK

≥0

is arbitrary, but it should be chosen to minimize the mean interval length. The
proposed method, K-CRC, introduces ℓγ for γ ∈ (0, 1): a convex upper-bound
to ℓ01. Then, it solves the following optimization problem

λ̃K = argmin
λK∈RK

≥0

∑
k∈[K]

nkλk s.t. ℓ̂γopt(MλK) ≤ ϵ, (PK)

where nk is the number of pixels in group k. We stress that in this procedure,
the calibration set Scal needs to be split in Sopt and S̃cal, such that the former
is used to solve (PK) and the latter to find λ̂ as in (6).

With this background, we now present the main contributions of our work.

3 Semantic Uncertainty Quantification

Observe that the partition matrix M that assigns each of the d pixels to one of
K groups does not depend on the measurement y. This choice is effective when
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Fig. 1: Illustration of our experimental setup.

the semantic content of each pixel is similar across observations (e.g., face images
can be aligned and centered). However, CT data is heterogeneous, and a fixed
partition matrix may unnecessarily increase the mean interval length.

In this work, we leverage foundational segmentation models [25,19] to con-
struct organ-dependent uncertainty intervals. Our method, sem-CRC, extends
K-CRC to instance-dependent memberships s(y) ∈ [K]d. This decouples opti-
mizing the mean interval length from the pixel domain, and it reflects the uncer-
tainty of the model in terms of semantic—and clinically meaningful—structures.
Formally, let s : Y → [K]d be a fixed segmentation model such that, for a vector
λsem ∈ RK

≥0, the family of nested set predictors {gλsem} is given by

gλsem(y)j = [q̂α(y)j − λs(y)j , q̂1−α(y)j + λs(y)j ]. (7)

Note that, differently from gλ(y) in (5), the same pixel j may receive differ-
ent assignments in different scans depending on the measurement y. Our work
does not study the performance of s, and calibration of segmentation models is
subject of complementary research [23,34,10,8]. We will proceed analogously to
the above, i.e. finding an anchor λ̃sem that minimizes the mean interval length
Īλsem(y), and then backtracking along the line λ̃sem +ω1K to control risk. Start
by noting that

Īλsem(y) =
1

d

∑
j∈[d]

(q̂1−α(y)j − q̂α(y)j) +
1

d

∑
k∈[K]

|Sk(y)|λk (8)

where Sk(y) = {j ∈ [d] : s(y)j = k} is the set of voxels that belong to organ k
for observation y. We can see that the mean interval length is still a function of
the sum of the λk’s, but the multiplicative factors now depend on y as well. So,
it becomes necessary to minimize the mean interval length in expectation over
Y . We extend the original optimization problem (PK) to its semantic version

λ̃sem = argmin
λsem∈RK

≥0

∑
k∈[K]

EY [|Sk(Y )|]λk s.t. ℓ̂γopt(λsem) ≤ ϵ, (Psem)

where, in practice, we estimate the objective over Sopt. To conclude, we choose

λ̂sem = inf

{
λsem ∈ λ̃sem + ω1K :

ncal

ncal + 1
ℓ̂01cal(λsem) +

1

ncal + 1
≤ ϵ

}
, (9)

and we state the validity of sem-CRC in the following proposition.1

1 We present results for CRC, but our method generalizes to RCPSs as well.
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Fig. 2: Example calibration data: ground-truth, measurement, and segmented
predictions for both tasks and datasets.

Proposition 1. For a risk tolerance ϵ > 0, segmentation model s : Y → [K]d,
anchor point λ̃sem ∈ RK

≥0, and exchangeable calibration and test points Scal =

{(X(i), Y (i))}ncal
i=1 , (X,Y ), the choice of λ̂sem as in (9) provides risk control, i.e.

E[ℓ01(gλ̂sem
(Y ), X)] ≤ ϵ. (10)

Proof. Let λsem(ω) = λ̃sem + ω1K , ω ∈ R, and note that ℓ01(gλsem(ω)(y), x) is
bounded by 1 and monotonically non-increasing in ω. Since s is fixed, the random
functions Li(ω) = ℓ01(gλsem(ω)(Y

(i)), X(i)) and L(ω) = ℓ01(gλsem(ω)(Y ), X) are
exchangeable. The result then follows by applying [4, Theorem 1] to ω.

We remark that sem-CRC also relies on splitting the calibration set Scal into Sopt

to solve (Psem), and S̃cal to find λ̂sem as in (9). Furthermore, and naturally, the
method requires performing inference with the same segmentation model used
for calibration. We regard semantic calibration with respects to ground-truth
segmentations as an extension of this work.

Controlling risk for each organ. Clinical tasks may require different organs
to have the same level of reconstruction accuracy, but λ̂sem may overcover easy-
to-reconstruct ones while undercovering others. For example, as noted by [12],
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Table 1: Summary of calibration results as mean and standard deviation over 20
independent runs of each calibration procedure with risk tolerance ϵ = 0.10.

TotalSegmentator FLARE23

Task Procedure Risk Length (×10−2) Risk Length (×10−2)

Denoising

CRC 0.095± 0.006 11.60± 0.21 0.096± 0.004 9.16± 0.09
K-CRC 0.097± 0.006 9.37± 0.20 0.096± 0.006 6.81± 0.21
sem-CRC 0.098± 0.006 8.72± 0.18 0.095± 0.006 6.36± 0.11
sem-CRC 0.055± 0.004 11.84± 0.20 0.056± 0.003 8.06± 0.16

FBP-UNet

CRC 0.098± 0.007 10.43± 0.23 0.095± 0.006 6.19± 0.09
K-CRC 0.098± 0.009 9.32± 0.13 0.095± 0.003 6.20± 0.14
sem-CRC 0.097± 0.007 8.95± 0.19 0.095± 0.006 6.18± 0.13
sem-CRC 0.059± 0.005 12.43± 0.20 0.057± 0.003 7.72± 0.17

per-organ coverage is critical to avoid treatment errors for tumor resection plan-
ning or organ transplant evaluation, at the cost of larger uncertainty intervals.
On the other hand, interval length minimization across several organs informs
on the distribution of the error of the model for tasks such as whole-abdomen
segmentation or total lesion volume measurement. Thus, we specialize sem-CRC
to control risk with the same tolerance ϵ for each segmented structure, and we
call this variation sem-CRC. With this, our contributions allow clinicians to use
the minimal dose that guarantees risk control for a target organ with uncer-
tainty intervals shorter than a task-driven tolerance, and regulatory agencies to
potentially issues standards accordingly. Denote

ℓ01k (gλsem(y), x) =
1

|Sk(y)|
∑

j∈Sk(y)

1{xj /∈ gλsem(y)j} (11)

the proportion of pixels in organ k (e.g., liver) that fall outside of their intervals,
and let ek be the kth standard basis vector. The choice of λ̂sem ∈ RK

≥0 with

λ̂sem,j = inf

{
λ ∈ R≥0 :

ncal

ncal + 1
ℓ̂01k,cal(λ̃sem + λek) +

1

ncal + 1
≤ ϵ

}
(12)

provides risk control for each organ, that is E[ℓ01k (gλ̂sem
(Y ), X)] ≤ ϵ, k = 1, . . . ,K.

This follows by applying Proposition 1 to each dimension of λ̂sem. We briefly re-
mark this is different from multiple risk control with one scalar λ as in [4,18,12],
and that the equivalent for RCPS requires multiple hypothesis testing correction.

4 Experiments

We compare CRC, K-CRC, and sem-CRC for denoising and for a basic FBP-
UNet reconstruction task on TotalSegmentator [32] (1, 429 scans) and on the first
1,000 scans from the training split of the FLARE23 [20] challenge (see Fig. 1 for
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Fig. 3: Example conformalized uncertainty maps on one volume per dataset with
each calibration method for the FBP-UNet pipeline. The bottom row shows λ̂sem,
the semantic uncertainty parameter learned by our method, sem-CRC.

an illustration of the experimental setup). We resample the FLARE23 dataset at
1.5mm×1.5mm×3.0mm resolution, and we window all scans between −175HU
and 250HU. For denoising, we add independent Gaussian noise with σ = 0.2;
for reconstruction, we use the ODL library [1] with ASTRA [30,31] to simulate
a helical cone beam geometry. We set the pitch adaptively to cover the entire
volume in 8 turns, and acquire data over 1,000 angles with a detector of size
512 pixels× 128 pixels. We model low-dose measurement as linear Poisson noise
with I0 = 1, 000. We chose these settings to highlight our method’s performance
on a challenging task. For each task, we use MONAI [9] to train a 3D UNet [26]
(≈ 5 M parameters, ROI of 963 voxels) with quantile regression (α = 0.1, i.e. the
10th and 90th quantiles) on the AbdomenAtlas-8K dataset [25] (5, 195 scans).

We segment 9 structures: spleen, kidneys, gallbladder, liver, stomach, aorta,
inferior vena cava (IVC), and pancreas using SuPrem [19], a state-of-the-art
general-purpose segmentation model for medical imaging. All remaining voxels
that are not background are labeled generically as “body”. We remark that the
segmentation model s is introduced as a function of the measurement for the
sake of generality. Here, we segment the predictions of the 3D UNet, but any
strategy independent of the calibration data would be valid. To solve (Psem)
over a distribution of volumes that represents all organs, we select 4 equidistant
slices from the window of 48 that maximizes the segmentation volume. Finally,
we center-crop or pad slices to 256 voxels× 256 voxels for calibration.

Since sem-CRC relies on a fixed segmentation model, we evaluate predictions
in terms of mean structure-wise F1 score between the segmented outputs and the
ground-truth annotations over 200 random volumes. For the TotalSegmentator
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Fig. 4: Mean interval length and risk stratified by organ for the FBP-UNet task
across all calibration procedures and datasets. sem-CRC is the only procedure
that guarantees risk control for each organ.

dataset, we obtain 0.85 ± 0.07 and 0.83 ± 0.08 for denoising and FBP-UNet,
respectively; and, equivalently, 0.88 ± 0.06 and 0.87 ± 0.07 for the FLARE23
dataset. Although we see a slight drop in performance compared to the metrics
reported in [19], these results confirm predictions are of reasonable quality for
segmentation, and we include some examples in Fig. 2.

We set the error tolerance to ϵ = 0.10, allowing at most 10% of ground-truth
voxels to fall outside their prediction intervals. Each calibration procedure is
run 20 times on independent subsets of ncal = 512 scans, with risk estimated
on ntest = 128 scans. We allocate nopt = 32 calibration samples to solve (PK)
and (Psem), ensuring a fair comparison across methods. For K-CRC, we follow
[28] and construct the assignment matrix M by grouping voxels into K = 4
quantiles of the loss on the optimization set. Finally, to solve (PK) efficiently, we
subsample dopt = 50 voxels (much smaller than 2562) stratified by membership;
and for (Psem), we ensure the smallest organ has a support of at least dmin = 2
voxels by subsampling dopt = dmin/mink E[|Sk|] dimensions (dopt ≈ 3, 000).
Solving subsampled problems reduces complexity to the order of seconds.

Table 1 summarizes risk and mean interval length across all datasets and
tasks. All procedures are valid, i.e. they control risk at level ϵ. Our method,
sem-CRC, consistently provides the shortest uncertainty intervals. On the other
hand, and as expected, controlling risk for each organ with sem-CRC increases
the mean interval length. Fig. 3 compares the conformalized uncertainty maps
obtained with each method on the same volume, and it includes the vector λ̂sem
learned by sem-CRC. The uncertainty maps generated by sem-CRC are sharper
and contain fewer artifacts thanks to using instance-level information. Further-
more, λ̂sem directly informs on which organs have higher levels of uncertainty,
depicting how the same model may display different uncertainty patterns across
different populations. These findings are fundamental to the responsible use of
general-purpose machine learning models across centers serving diverse demo-
graphics. Finally, Fig. 4 highlights the difference between controlling risk for
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each organ or cumulatively over a volume: all methods but sem-CRC achieve
risk control by overcovering background and undercovering organs. Our method-
ology gives users the flexibility to specify which organs they desire to control risk
for depending on the clinical task at hand.

5 Conclusions

Modern deep learning models are widely used for image reconstruction, including
computed tomography. However, they often provide only point-wise estimates,
lacking statistically valid uncertainty measures. This work proposes a conformal
prediction approach that generates uncertainty intervals with controlled risk at
any user-specified level. By integrating high-dimensional calibration and state-of-
the-art segmentation models, our method, sem-CRC, produces organ-dependent
uncertainty sets that are adaptive to each patient. Moreover, it can control risk
for each organ. Not only does sem-CRC provide the tightest uncertainty set, but
also it communicates findings with clinically meaningful anatomical structures.
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