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Abstract. Multiple Instance Learning (MIL) is a powerful weakly su-
pervised learning framework for high-resolution medical images, but its
application in mammographic breast cancer (BC) diagnosis overlooks in-
stance interactions and the multi-scale nature of BC lesions. In this work,
we propose a novel Feature Pyramid Network (FPN)-MIL model for BC
classification and detection in high-resolution mammograms, integrating
(1) a FPN-based instance encoder that enables a multi-scale analysis
across different receptive-field granularities while operating on single-
scale input patches; (2) deep-supervised scale-specific instance aggrega-
tors that support conventional attention (AbMIL) or transformer-based
(SetTrans) mechanisms; (3) an attention-based multi-scale aggregator
that dynamically combines scale-specific features, improving robustness
to lesion scale variability. Our experiments show that FPN-MIL is supe-
rior to conventional single- and multi-scale patch-based MIL models, with
FPN-SetTrans outperforming baselines in calcification classification and
detection while FPN-AbMIL performs best for mass classification. Code
is available publicly at: https://github.com/marianamourao-37/Multi-
scale-Attention-based-MIL.
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1 Introduction

Breast cancer (BC) is the most diagnosed cancer worldwide, with over 3 million
new cases and 1 million related deaths estimated by 2040 [1]. Mammography is
the gold standard for early BC detection, providing high-resolution imaging of
suspicious lesions (e.g., masses and calcifications) [19, 29]. While deep learning
(DL)-based computer-aided diagnosis (CAD) systems have shown promise in
mammographic BC diagnosis (MBCD), they face key challenges: (1) full image-
based DL models typically rely on downsampled images, compromising robust
feature learning for small Regions-of-Interest (ROIs), besides their "black-box"
nature limiting interpretability [3, 21, 26]; (2) ROI-based DL models improve
interpretability and achieve state-of-the-art performances, but require labor-
intensive annotations (such as bounding-boxes or patch annotations) [5, 21, 26].
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Multiple Instance Learning (MIL) has emerged as a powerful weakly su-
pervised learning (WSL) framework for high-resolution medical images, treating
them as a bag of instances (e.g., patches or pixels) that are aggregated for image-
level classification while relying only on weak image-level supervision [5]. Early
instance-based MIL models [6, 10, 28] focused on instance-level learning but suf-
fered from noisy instance labels due to the lack of direct supervision, degrading
image classification and instance localization [11]. In contrast, embedded-based
MIL models transform the MIL problem into a standard supervised learning task
by computing a joint bag embedding from instance features, typically achieving
improved performances [5, 11]. Most embedded-based MIL research focuses on
histopathologic whole-slide images [7, 14, 16, 17, 27], whereas MBCD studies pri-
marily address instance ambiguity through conventional attention-based MIL
aggregators [2, 3, 22, 23], overlooking instance interactions and the multi-scale
nature of BC lesions. Transformer-based MIL aggregators address the former,
including more efficient formulations for the commonly large-size bags in CAD
applications [13]. Existing multi-scale MIL models typically operate on multi-
scale input patches [7, 8, 14, 17, 27], increasing computational cost and limiting
lesion detection granularity [12]. Alternatively, pixel-based MIL models [10, 20,
28] enhance localization granularity by treating feature-map pixels as instances
but often rely on downsampled input images, losing fine-grained details [12].

In this work, we propose a novel embedded-based FPN-MIL model to clas-
sify and localize BC in full-resolution mammograms. Our main contributions
are: (1) a FPN-based instance encoder enabling multi-scale analysis across dif-
ferent receptive-field granularities while operating on single-scale input patches;
(2) Deep-supervised scale-specific instance aggregators that leverage hierarchi-
cal features, supporting either attention-based (AbMIL) or transformer-based
(SetTrans) mechanisms; (3) An attention-based multi-scale aggregator that dy-
namically combines scale-specific features for a unified analysis, enhancing ro-
bustness to lesion scale variability; (4) Experiments show that our FPN-MIL is
superior to conventional single/multi-scale patch-based MIL models, with FPN-
SetTrans outperforming all baselines in calcification classification and detection
while FPN-AbMIL performs best for mass classification. To the best of our
knowledge, the proposed FPN-MIL is the first embedded-based MIL model to
address the multi-scale nature of lesions and instance interactions in MBCD.

2 Method

The proposed FPN-MIL model is illustrated in Figure 1. Similar to a typical
MIL framework for MBCD, an input grayscale mammogram I ∈ RH×W is con-
verted into a grid of patches B = {bi}Ni=1, where N is the number of extracted
patches and each patch bi ∈ RHp×Wp has dimensions (Hp,Wp). Unlike conven-
tional MIL models that consider patch-level instances directly, a novel FPN-
based instance encoder is introduced to hierarchically extract fine-to-coarse
instance feature vectors Xs from multi-scale feature maps at different pyramid
levels s ∈ {1, ..., S}. Deep-supervised scale-specific instance aggregators
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leverage the hierarchical features to independently compute bag embeddings hs

and predictions P s, while the attention-based multi-scale aggregator adap-
tively integrates information across scales for a unified analysis. The following
subsections provide a more detailed description of the main modules.

Fig. 1. Overview of the proposed FPN-MIL model. Deep-supervised instance aggrega-
tors leverage instance features Xs across pyramid levels s, computing bag embeddings
hs and predictions P s. The attention-based multi-scale aggregator combines {hs}Ss=1

into a multi-scale bag embedding hms to produce the final prediction Pms.

2.1 FPN-based Instance Encoder

The FPN-based Instance Encoder F consists of a shared hierarchical architec-
ture that independently and identically processes each patch within a bag b ∈ B,
generating instance feature vectors Xs = F(b) ∈ Rdx×

Hp
s ×Wp

s associated with
feature-map pixels at different pyramid levels s ∈ {1, ..., S}. To address the
semantic gap inherent in hierarchical backbones (e.g., CNNs), an FPN archi-
tecture is used to semantically refine the backbone’s bottom-up feature maps{
F 1, ..., FS

}
into a top-down feature pyramid

{
R1, ..., RS

}
. For simplicity, the

original FPN architecture proposed by Lin et al. [15] was adopted, given by:

RS = Conv3×3(Conv1×1(F
S))

Rs = Conv3×3(Conv1×1(F
s) + Up(Rs+1)), s ∈ {1, ..., S − 1} , (1)

where the 1 × 1 and 3 × 3 convolutional layers produce dx-channel outputs,
ensuring consistent feature dimension across the refined feature maps [15]. For
the subsequent MIL framework, the 2D multi-scale feature maps {Rs}Ss=1 are
flattened to generate corresponding instance feature matrices Xs = {xs

i}
ns

i=1 ∈
Rns×dx , where the number of instances per scale is ns = N × Hp

s × Wp

s .

2.2 Deep-supervised Scale-specific Instance Aggregators

Deep-supervised scale-specific instance aggregators are integrated to effectively
leverage multi-scale information across pyramid levels, providing additional MIL
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supervision to enhance hierarchical feature learning as suggested by Wang et
al. [25]. Each scale-specific instance aggregator As independently processes an
instance feature matrix Xs ∈ Rns×dx into a corresponding bag embedding
hs = As(Xs) ∈ Rd, followed by a classification head Cs that computes the
bag probability P s = Cs(hs) ∈ [0, 1]. In this work, we investigate two attention-
based aggregators that can be decomposed into an encoder and a pooling stage.
For ease of notation, the scale-specific superscript s will be omitted.

Attention-based MIL (AbMIL) In the pioneer work by Ilse et al. [11], the
encoder stage employs an MLP to transform instance features X ∈ Rn×dx into
lower-dimensional embeddings Z = MLP (X) ∈ Rn×d, with the encoded feature
dimension d being an hyperparameter. The pooling stage consists of a learnable
weighted-average operator:

h =

n∑
i=1

aizi, (2)

where attention weights ai quantify each instance’s contribution to the bag clas-
sification. These weights are computed through a specialized neural network
with two fully connected layers parameterized by V , U ∈ RL×d, followed by
element-wise multiplication ⊙ and a softmax normalization:

ai =
exp

{
wT(tanh(V zTi )⊙ sigm(UzTi ))

}∑n
j=1 exp

{
wT(tanh(V zTj )⊙ sigm(UzTj ))

} , (3)

with the attention pooling dimension L being another hyperparameter. Instance-
level attention scores A = {ai}ni=1 are posteriorly used to produce interpretable
heatmaps.

Set Transformer (SetTrans) It is a permutation-invariant transformer-based
aggregator proposed by Lee et al. [13], with its basic operation being the Multi-
head Attention Block (MAB):

MAB(X,Y ) := LN(Z ′ +MLP(Z ′))
Z ′ := LN(X +MHA(X,Y, Y )),

(4)

where LN denotes Layer Norm and MHA is the multi-head attention mechanism
proposed in the original transformer [24]. For dealing with large-size bags, the
permutation-equivariant Induced Set Attention Blocks (ISABs) are employed:

ISABm(X) := MAB(X,MAB(Im, X)), (5)

relying on a set of m-trainable inducing points Im ∈ Rm×d to produce a con-
textually enriched encoded set Z ∈ Rn×d, notably reducing conventional com-
putational complexity from O(n2) to O(m.n). This encoder stage has some hy-
perparameters: the encoded feature dimension d; the number of inducing points
m; the number of attention heads nh,ISAB ; the number of ISAB layers Le, with
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Le > 1 capturing higher-order instance interactions. Since n varies across scales,
a rule-based criterion is considered to set m = 10× log(n) that ensures m ≪ n
for attaining computational efficiency across scales. Regarding the pooling stage,
the permutation-invariant Pooling by Multi-head Attention (PMA) is employed:

PMA(Z) := MAB(Se, Z), (6)

relying on a learnable seed vector Se ∈ R1×d as the query to aggregate the
encoded bag feature matrix Z ∈ Rn×d into a corresponding bag embedding
h = PMA(Z) ∈ Rd. The number of heads nh,PMA is an hyperparameter. Impor-
tantly, PMA also produces instance-level attention scores A = {ai}ni=1 computed
through the MHA mechanism.

2.3 Attention-based Multi-scale Aggregator

The attention-based multi-scale aggregator M computes a multi-scale bag em-
bedding hms = M(H) ∈ Rd by adaptively weighting the scale-specific bag em-
beddings H = {hs}Ss=1 using the AbMIL mechanism [11], with scale scores as

given by:

as =
exp

{
wT(tanh(V hsT)⊙ sigm(UhsT))

}
∑S

j=1 exp
{
wT(tanh(V hjT)⊙ sigm(UhjT))

} . (7)

Finally, a classification head C predicts the final bag probability Pms = C(hms) ∈
[0, 1] which determines image-level classification.

3 Experiments

3.1 Dataset

The publicly available dataset VinDr-Mammo [18] was used to evaluate the per-
formance of the proposed model, containing 5000 four-view exams with image-
level assessment labels and annotated bounding-boxes for non-benign findings
(e.g., mass, calcification). The original train-test split is used, with the training
set further divided by a 80%−20% stratified grouped split to obtain a validation
set, used for monitoring the model’s performance during training.

3.2 Experimental details

Data Pre-processing The pre-processed mammograms from the VinDr dataset
provided by Ghosh et al. [9] were used. Implementation Details Patch-based
MIL baselines (AbMIL [11] and SetTrans [13]) were implemented, operating
on conventional 256 × 256 non-overlapping patches. In contrast, our FPN-MIL
models process 512 × 512 non-overlapping patches for enabling a more com-
prehensive multi-scale analysis. Following prior deep MIL models that handle
large-size bags [7, 14, 16, 17], we use a frozen pre-trained backbone for offline in-
stance feature extraction. Specifically, the pre-trained Mammo-CLIP based on
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an EfficientNet-B2 (EN-B2) was chosen as a state-of-the-art Vision-Language
foundational model for MBCD [9]. For patch-based MIL baselines, extracted
instance features vectors have a dimensionality of dx = 352. In our FPN-MIL
models, the last two bottom-up feature maps were extracted offline and re-
fined online into a top-down feature pyramid with a shared feature dimension
of dx = 256. To extend the multi-scale analysis to a larger scale, a stride-four
downsampling was applied over the coarser feature maps similar to the approach
of Lin et al. [15]. Regarding training configurations, we adopted a setup simi-
lar to Ghosh et al. [9] for the downstream classification task. Specifically, all
MIL models were trained with a batch-size of 8 for 30 epochs using the AdamW
optimizer with initial learning rate of 5e−5, a weight decay of 1e−4 and a cosine-
annealing learning-rate scheduler. The official hyperparameters for AbMIL and
SetTrans models were used, namely: d = 256; L = 128; nh,ISAB = 4; Le = 2. For
model optimization, we applied a class-weighted binary cross-entropy loss across
all scales, combining multi-scale and scale-specific losses. Evaluation Metrics
The models are evaluated for classification and detection of masses and calcifi-
cations in the VinDr dataset. Binary image-level classification is reported using
AUC-ROC, relying on ground-truth labels {No ⟨E⟩, ⟨E⟩}, where E denotes ei-
ther a mass or calcification. Localization performance is evaluated in a post-hoc
analysis of the multi-scale aggregated heatmaps, with mean Average Precision
(mAP) being reported at an IoU threshold of 0.25. We also report mAP for le-
sions of different sizes: small (area < 1282 pixels), medium (1282 < area < 2562

pixels) and large (area > 2562 pixels), respectively denoted as mAPs, mAPm

and mAPl. Following prior MIL works [2, 16], fine-grained heatmaps are gen-
erated during inference by defining a 75% overlap between extracted patches,
where the attention scores in overlapped regions are accumulated and averaged.
Instance-level attention scores are then re-scaled with min-max normalization
and mapped to their corresponding spatial locations in the mammogram. The
multi-scale aggregated heatmap is obtained by weighting scale-specific heatmaps
according to the scale scores learned by the multi-scale aggregator. To generate
predicted bounding-boxes, isolated high-attention regions from the heatmap are
extracted by simultaneously thresholding pixel values above the 95% quantile of
the heatmap’s distribution [9] and a fixed threshold of 0.5 for further refinement.

4 Results and Discussion

4.1 Comparison with Baselines

Table 1 compares the proposed FPN-MIL models against baselines across differ-
ent learning paradigms. For MIL models, SetTrans-based aggregators perform
better for calcifications, possibly helping to recognize clusters of microcalcifi-
cations highly associated with malignancy [19] rather than treating them in
isolation by establishing long-range instance interactions. Contrarily, masses are
isolated volumes that seem to benefit from the localized nature of AbMIL-based
aggregators that help preserve mass shape and structure. Notably, our FPN-MIL
models significantly improve detection performance across lesion sizes compared
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with SSP-MIL baselines, being illustrated in Figure 2 the multi-scale aggregated
heatmaps for our best-performing models. Specifically, FPN-SetTrans achieves
the best performance in calcification classification and detection, while the FPN-
AbMIL achieves the best mass classification but fails to surpass in mass detec-
tion compared to the FSOD and WSOD models. Given the greater variability
in mass appearance and poorer contrast [4], our models struggles with accurate
mass detection under the limited image-level supervision. While RetinaNet bene-
fits from ground-truth bounding boxes for improved detection, Mammo-FActOR
leverages an image-text alignment mechanism for sentence-level granularity [9]
which proves particularly effective for mass detection possibly due to well-defined
mass attributes (e.g., shape, size and margins) in the available radiology reports.

Table 1. Performance of the proposed FPN-MIL models compared with baselines
across different learning paradigms: Fully Supervised Classification (FSC); Fully Su-
pervised Object Detection (FSOD); Weakly Supervised Object Detection (WSOD);
Single-scale Patch-based MIL (SSP-MIL). Detection performance is reported for all
(mAP), small (mAPs), medium (mAPm) and large (mAPl) lesions. Results for EN-B2,
RetinaNet and Mammo-FActOR are reported from [9] under the linear probe setting.

Type Model Calcification Mass
AUC mAP mAPs mAPm mAPl AUC mAP mAPs mAPm mAPl

FSC EN-B2 [9] 92.0 - - - - 73.0 - - - -

FSOD RetinaNet [9] - 17.0 - - - - 37.0 - - -

WSOD Mammo-FActOR [9] - 20.0 - - - - 38.0 - - -

SSP- AbMIL [11] 90.5 15.9 0.0 26.6 52.1 75.8 14.7 0.0 18.8 61.0

MIL SetTrans [13] 88.9 18.4 0.1 29.4 57.6 73.2 5.8 0.0 9.1 22.0

FPN- (Our) FPN-AbMIL 93.5 32.0 9.1 34.8 57.5 79.2 28.2 4.7 32.1 66.2

MIL (Our) FPN-SetTrans 94.2 37.4 18.8 39.5 62.2 77.4 24.3 3.0 28.0 73.2

4.2 Ablation Studies

The following ablation studies are conducted on the best-performing models
(i.e., FPN-SetTrans for calcifications and FPN-AbMIL for masses), with results
summarized in Table 2. (1) Effect of FPN-based Instance Encoder: We
compare our FPN-based instance encoder against the conventional multi-scale
patch (MSP) encoders while keeping the rest of the model preserved. Following
our three-scale model design, we consider patch-sizes of 128, 256 and 384. The
obtained results demonstrate the superiority of our FPN-based instance encoder
in the classification and detection of both lesion types, particularly boosting
small lesion detection given its improved receptive-field granularity over patch-
level encoders. (2) Effect of Multi-Scale Aggregator: We also analyze the
impact of different multi-scale aggregators in our FPN-MIL models. Removing
the multi-scale aggregator (w/o MS-Aggr) results in a slight performance drop
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Fig. 2. Multi-scale aggregated heatmaps produced by the proposed FPN-MIL model,
namely the FPN-SetTrans for calcifications and FPN-AbMIL for masses.

across most metrics for both lesion types, supporting prior findings on the bene-
fits of multi-scale integration for model optimization [8, 17]. Conversely, feature
concatenation of scale-specific bag embeddings (concat MS-Aggr) was the worst
configuration regarding AUC and mAP metrics, particularly hindering lesion de-
tection. While it achieves a comparable mAPs and mAPl but a significantly lower
mAPm for calcifications, for masses it actually achieves the highest mAPs and
mAPm but a drastically lower mAPl. These results suggest ineffective feature fu-
sion diluting discriminative information at specific scales, as already reported in
the MIL literature [7, 14, 27]. Notably, the attention-based multi-scale aggregator
achieves the best trade-off between classification and detection performances by
adaptively weighting scale-specific features, more effectively preserving relevant
information across scales and enhancing robustness to lesion scale variability.

Table 2. Ablation studies comparing different instance encoders (Inst-Enc) and multi-
scale aggregators (MS-Aggr) for the best-performing FPN-MIL models. Detection per-
formance is reported for all (mAP), small (mAPs), medium (mAPm) and large (mAPl)
lesions. The last row corresponds to our FPN-MIL models.

Calcification Mass
Inst-Enc MS-Aggr AUC mAP mAPs mAPm mAPl AUC mAP mAPs mAPm mAPl

MSP Attention 91.3 18.5 0.3 22.8 54.9 77.1 9.5 0.0 9.5 46.6
FPN w/o 93.8 33.0 8.5 35.7 61.6 78.8 25.2 5.0 30.7 56.0
FPN Concat 92.2 28.8 12.6 17.2 59.4 76.9 19.4 7.0 32.6 26.4
FPN Attention 94.2 37.4 18.8 39.5 62.2 79.2 28.2 4.7 32.1 66.2
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5 Conclusion

In this work, we propose a novel weakly supervised FPN-MIL model for BC clas-
sification and detection, integrating an FPN-based instance encoder with multi-
scale receptive-field granularity, deep-supervised scale-specific instance aggrega-
tors that support either AbMIL or SetTrans, and an attention-based multi-scale
aggregator for a unified multi-scale analysis. Experimental results demonstrated
that our FPN-MIL models significantly improves lesion detection over conven-
tional single/multi-scale patch-based MIL models, with FPN-SetTrans perform-
ing best for calcifications and FPN-AbMIL for masses. In future work, we aim to
extend our approach to end-to-end model training and explore other attention-
based aggregators to further improve lesion detection under weak supervision.
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