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Abstract. The explosive development of large-scale model technology has pro-
vided strong support for achieving more intelligent, robust, and precise segmen-
tation techniques. However, owing to the unique challenges posed by medical 
domain data, the typical 3D medical image-text alignment model, 3D CLIP, 
struggles to match the performance of its natural scene counterpart. This limita-
tion hinders the application of CLIP-based text-image reasoning in medical seg-
mentation tasks. Furthermore, CLIP has been shown to rely on high-level seman-
tic alignment between vision and text, lacking effective support for local visual 
features that are crucial for dense prediction tasks. Existing reasoning segmenta-
tion methods often adopt a redundant design with two visual encoders—one from 
CLIP and the other from large vision models for downstream dense tasks. This 
adversely affects model efficiency and complicates the training process. To ad-
dress these challenges, we propose a novel framework, R1Seg-3D, which unifies 
a visual encoder. Our approach achieves a three-way alignment of dense visual, 
text reasoning, and mask decoding features within a shared latent space. Com-
pared with previous methods, R1Seg-3D implicitly incorporates more detailed 
spatial features into the reasoning path. Therefore, it can strengthen the reasoning 
ability by incorporating additional visual spatial details and directly enhances the 
mask decoding process. The R1Seg-3D architecture is more concise and easier 
to be trained. Extensive evaluations on 25 diverse datasets demonstrate that 
R1Seg-3D outperforms state-of-the-art methods in both performance and stabil-
ity. This work advances intelligent medical imaging and lays a foundation for 
future research in inference-driven segmentation. Our code and models are avail-
able at https://github.com/lihaoqin168/R1Seg-3D. 

Keywords: Reasoning Segmentation, Multimodal Large Language Model, 
Medical 3D CTs Segmentation. 

1 Introduction 

Accurate segmentation of anatomical structures and pathological regions from 3D CT 
scans is crucial for diagnosis, treatment planning, and surgical navigation [1]. In clinical 
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practice, physicians often prefer to provide concise instructions, such as "Are there any 
areas in the liver that exhibit characteristics of a fluidfilled cavity?" to guide medical 
image analysis systems. However, existing systems typically rely on explicit predefined 
categories to perform segmentation, lack the ability to reason about implicit clinical 
intentions. Medical segmentation traditionally relies on 3D convolutional neural net-
works (e.g., 3D U-Net [2] and nnU-Net [3]) and transformer-based models (e.g., 
TransUNet [4] and UNETR [5]) for predefined categories. While effective, these meth-
ods lack adaptability to dynamic or unseen tasks, limiting their utility in diverse clinical 
scenarios. In recent years, remarkable advancements in large modeling techniques have 
been reported. Large vision models (LVMs), such as SAM [6] and Dinov2 [7], have 
shown strong zero-shot capabilities for diverse image distributions and extensive 
scenes. The SAM [6] introduces a paradigm shift by enabling flexible segmentation 
through text, box, and point prompts. This capability has sparked significant interest in 
medical imaging with adaptations such as MedSAM [8] and MedLSAM [9], highlight-
ing its potential for visual medical image analysis. 

Large language models (LLMs), such as LLaMA [10] and Qwen [11], have demon-
strated exceptional reasoning capabilities across a wide range of natural language pro-
cessing tasks[12]. The convergence of LLMs and LVMs has given rise to vision lan-
guage models (VLMs) [13], which excel with the ability to address visual question 
answering and complex reasoning tasks. In the medical domain, pioneering works such 
as LLaVA-Med[14] and BioMedGPT [15] have demonstrated the potential of VLMs 
for biomedical applications. To build on the visual-linguistic understanding capabilities 
of the aforementioned techniques, innovative reasoning segmentation methods [16, 17, 
18, 19] have been proposed. These LLM-powered segmentors have the ability to inter-
pret, process, and reason, translating abstract linguistic queries into specific pixel re-
gions within real-world contexts. LISA [16] and its variants [20, 21, 22] have achieved 
remarkable success in natural scenes, representing a significant advancement toward 
the development of more intelligent vision systems. However, applying these tech-
niques to 3D medical CT scenarios remains challenging. 

Fig. 1. Our work proposes an open-vocabulary segmentation method with reasoning capabilities. 

More specifically, the above models [16, 17, 18, 19] integrate a dual-encoder architec-
ture: one leverages the visual-textual capabilities of the pre-trained CLIP model, and 
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the other facilitates prompt-based segmentation via SAM [6]. However, the limitations 
of medical 3D CLIP diminish its design advantages, leading to computational ineffi-
ciency and redundancy while increasing training complexity in 3D medical scenarios. 
The 3D volumetric nature of CT scans and the scarcity of annotated medical image-text 
pairs pose significant challenges for training 3D medical CLIP [23]. The requirement 
to embed entire CT volumes at a global scale restricts the model's ability to learn from 
local regions of interest, which may be small or, in some cases, entirely absent. Conse-
quently, CLIP's image-text representation in 3D medical contexts is less effective than 
that in natural scenes. Furthermore, CLIP visual representations often lack fine-grained 
detail, particularly in tasks requiring precise spatial information [24, 25]. This limits its 
ability to capture subtle pathological features, such as small lesions or low-contrast re-
gions, which are critical for accurate diagnosis [26, 27, 28]. 

To address these challenges, we propose R1Seg-3D (Fig. 1 and Fig. 2), a novel 
framework that integrates the LLM and LVM techniques and is specifically designed 
for 3D medical imaging reasoning segmentation. Our main contributions are as follows: 
(1) We propose the first 3D reasoning segmentation method with a unified visual en-
coding framework, which improves both the efficiency and accuracy. (2) We align
dense visual and textual features within shared latent spaces, enhancing reasoning with
LLMs. This alignment effectively propagates to the mask decoding stage, ensuring ro-
bust reasoning and precise segmentation in complex medical scenarios. (3) R1Seg-3D's
ability to interpret implicit clinical instructions and perform reasoning-driven precision
segmentation represents a significant advance toward next-generation intelligent med-
ical imaging systems.

2 Methodology 

Fig. 2. Model structure of our R1Seg-3D. Unlike previous methods that utilize both CLIP and 
SAM visual encoders, our approach employs a unified image encoder to extract dense features, 
which are simultaneously fed into a multimodal reasoning module and a mask decoding module. 
These modules collaboratively align dense image features with linguistic reasoning and mask 
decoding features to produce both textual responses and segmentation outputs. 

Our proposed R1Seg-3D, detailed in Fig. 2, consists of three key components: a 3D 
image encoding module, a multimodal reasoning module, and a mask decoding module. 
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The 3D image encoding module, which is based on a Vision Transformer (ViT) archi-
tecture, extracts dense visual features from the input CT scan. These features are then 
projected into a shared latent space by the multimodal projector, aligning them with 
language reasoning features generated by the LLM enhanced with Low-Rank Adapta-
tion (LoRA). The LLM integrates dense visual features with textual descriptions (e.g., 
"pair of bean-shaped organs involved in waste excretion and fluid balance") to generate 
outputs, which may include a special <SEG> token indicating the segmentation target, 
such as "kidney." The segment projector processes this token to produce segmentation 
prompts, which are further refined by the prompt encoder. Finally, the mask decoder 
generates 3D segmentation masks (e.g., for the kidneys) by combining visual features 
and segmentation prompts. This unified visual encoder architecture enhances model 
efficiency and improves reasoning capabilities for dense tasks by enriching the LLM's 
reasoning processes with spatial information. 

Given an input 3D CT scan ximg and a corresponding question xtxt, the image encod-
ing module fenc processes ximg to extract dense visual features y'img. These features are 
subsequently passed through a multimodal projector fmp, which comprises three com-
ponents: a 3D average-pooling layer, a single-layer linear transformation, and a two-
layer multilayer perceptron (MLP). This projector bridges the gap between visual fea-
tures and language features, facilitating multimodal integration. Simultaneously, the 
question xtxt is fed into the multimodal reasoning module, where a pre-trained large 
language model (LLM) fllm embeds xtxt and generates a contextualized response y'txt by 
integrating the visual features provided by the projector fmp. This can be formulated as: 

y'img = fenc (ximg) (1) 

y'txt = fllm (xtxt, fmp (y'img)) (2) 

When the LLM's output y'txt indicates that the image contains the segmentation target 
implied by the question xtxt, y'txt includes a <SEG> token. During the forward pass, the 
<SEG> token is updated to encapsulate information about the segmentation target. The 
mask decoding module generates mask proposals guided by the <SEG> token, and the 
final segmentation output is generated by combining the selected proposals. We use an 
MLP-based segment projector fsp to obtain hseg from the embedded <SEG> token h'seg. 
Finally, hseg is input to the prompt encoder fpe to produce the final segmentation mask 
yimg via the mask decoder fdec. This can be expressed as: 

hseg = fsp (h'seg) (3) 

yimg = fdec (fpe (hseg), y'img) (4) 

To refine the segmentation mask iteratively, we perform a loop operation n times during 
mask decoding, with n = 2 determined experimentally to balance computational effi-
ciency and segmentation accuracy. 
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3 Experiments and Results 

Implementation Details. We employed a comprehensive dataset, integrating 25 open-
source datasets [29]1, which comprised 6,000 CT scan images and 150,000 pixel-level 
annotations. Leveraging this dataset, we utilized Qwen-72B to enrich the textual con-
tent and generate detailed CT quiz test paired data. To standardize the datasets, we 
applied min-max normalization uniformly to preprocess the voxels. The voxel spacing 
of the CT images in this study was resampled to 2.0 × 1.0 × 1.0 mm³. During training, 
the input images were randomly cropped to volumes of size [32, 256, 256], and the 
foreground and background patches were sampled at a ratio of 2:1 to ensure balanced 
representation. During inference, the sliding window strategy was used to process the 
entire volume sequentially; thus, each input matched the training volume size of [32, 
256, 256]. For evaluation, pixel-level metrics, including the Dice coefficient (F1 score), 
precision (Pre), sensitivity (SE, or recall), specificity (SPE), and false positive (FP), 
were employed to assess semantic segmentation performance across models. 

The training of R1Seg-3D is conducted in four stages, illustrated here using Phi3 as 
the LLM. In the first stage, R1Seg-3DSAM—which combines the 3D image encoding 
module and the mask decoding module from R1Seg-3D with a frozen text encoder—is 
trained on 25 labeled volumetric medical image segmentation datasets for 200 epochs, 
with a batch size of 16 and an input size of [32, 256, 256]. In the second stage, only the 
3D multimodal projector is trained via image-text pairs for 3 epochs, with a batch size 
of 8 × 6 and a learning rate of 10⁻⁴. The third stage involves fine-tuning the multimodal 
reasoning module while keeping the other two modules frozen, using image-question-
answer-mask data for 3 epochs, with a batch size of 6 × 6 and a learning rate of 5 ×10⁻5. 
This stage uses the parameter-efficient LoRA technique, with LoRA parameters set to 
r = 16, α = 32, and a dropout rate of 0.1. In the final stage, all three modules are fine-
tuned together for 3 epochs to further refine the model's performance. Mixed-precision 
training (bf16) is enabled by DeepSpeed, and all the experiments are implemented in 
PyTorch and parallelized across 6 NVIDIA A40 GPUs with 48 GB memory. Training 
is completed in approximately 4 days. 

Comparision with M3D-LaMed. To the best of our knowledge, M3D-LaMed [23], 
based on LISA with a dual-encoder architecture, is the state-of-the-art reference ex-
pression segmentation model in medical 3D imaging; thus, we quantitatively compared 
our R1Seg-3D (Phi 3) with M3D-LaMed. The boxplot in Fig. 3 demonstrates that 
R1Seg-3D outperforms M3D-LaMed overall, with higher median and mean values 
across most datasets. M3D-LaMed has a wider interquartile range (IQR) in 14 datasets, 
indicating greater variability in its performance, whereas R1Seg-3D has a more con-
sistent performance distribution. Notably, M3D-LaMed fails to accurately identify co-
lon cancer targets in the MSD-Colon dataset, likely because of the complexity and small 
size of colon cancer regions. 

1  https://github.com/BAAI-DCAI/SegVol 
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Fig. 3. Comparison of our R1Seg-3D (red) and the existing 3D medical inference segmentation 
method, M3D-LaMed (black), across 25 datasets in terms of F1 scores (%). 

As shown in Table 1, R1Seg-3D achieves significant improvements over M3D-LaMed, 
with average score increases of +8.18% in F1, +6.3% in precision, and +7.64% in sen-
sitivity. Specifically, R1Seg-3D outperforms M3D-LaMed in key datasets such as ACT 
(F1: 91.41% vs. 89.84%), CTOrg (F1: 88.03% vs. 81.41%), and TS (F1: 72.23% vs. 
62.58%). These results underscore the robustness and generalizability of our R1Seg-
3D across diverse medical image segmentation tasks. 

Table 1. Segmentation performance comparison with the state-of-the-art method M3D-LaMed. 

Method 
F1(%) Pre (%) SE(%) 

Mean ACT CTOrg TS Mean ACT CTOrg TS Mean ACT CTOrg TS 
M3D-LaMed 64.14 89.84 81.41 62.58 69.14 89.45 82.88 67.91 65.67 90.58 84.51 64.19 

R1Seg-3D 72.32 91.41 88.03 72.23 75.44 91.89 88.40 75.01 73.31 91.35 89.49 73.33 

Comparison of Different LLMs in the Reasoning Module. We evaluate the impact 
of integrating Phi, LLaMA, Qwen, and LLaVA-Med (pretrained on the medical do-
main) into the reasoning module of R1Seg-3D. We report the average performance 
across 25 datasets and F1 scores on six specific datasets: TS (104 labels), WORD (16 
labels), AMOS (15 labels), CTOrg (6 labels), ACT (3 labels), and LUNA (3 labels). 

Table 2. Performance comparison of four LLMs integrated into the reasoning module. 

LLM Size F1 (%) Pre (%) SE(%) TS WORD AMOS CTOrg ACT LUNA 
Phi 3 4B 72.32 75.44 73.31 72.23 71.19 69.51 88.03 91.41 92.03 
Qwen 2.5 7B 72.37 75.20 73.36 72.12 71.66 70.89 88.77 91.34 93.00 
Llama 3 8B 76.72 79.40 77.47 77.02 76.06 73.92 89.46 92.00 93.46 
Llava-Med 7B 72.79 76.16 73.71 72.38 75.16 72.74 89.71 92.00 93.29 

As shown in Table 2, LLaMA 3 (8B) consistently outperforms the other models across 
most metrics and excels in domain-specific tasks. In contrast, Phi 3 (4B) achieves 
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competitive performance despite its smaller size, demonstrating efficiency in resource-
constrained scenarios. These results highlight the importance of model size and archi-
tecture in optimizing medical image segmentation performance. Larger LLMs, such as 
LLaMA 3, offer superior accuracy and generalization for the reasoning module, 
whereas smaller models, such as Phi 3, provide a viable trade-off between performance 
and efficiency, making them suitable for resource-constrained environments. 

Effectiveness of the Sliding window Strategy. Owing to the larger volume of 3D im-
ages than 2D images, we employ a sliding window approach to perform reasoning and 
segmentation sequentially, subsequently combining the results to form the final mask 
(as shown in Fig. 1). To assess the effectiveness of this strategy, we selected eight seg-
mentation targets across 25 datasets, including four organs (large-volume liver, me-
dium-volume stomach, complex-shaped pancreas, and small-volume gland) and four 
lesion labels (lesion, cyst, tumor, and cancer). Fig. 4 shows that the left-side violin plots 
(with sliding window) are more concentrated in upper regions than the right (without 
sliding window), indicating enhanced segmentation accuracy. The bottom row, repre-
senting lesion segmentation, exhibits high density below 20%, reflecting frequent seg-
mentation failures. Fig. 4 highlights challenges in medical segmentation: the scarcity 
of datasets with region-level lesion annotations and textual descriptions, and the limi-
tations of existing algorithms in accurately segmenting complex or small targets. 

Fig. 4. Violin plots comparing segmentation performance with and without sliding window. 

Effectiveness of Reasoning Modual. We perform an ablation study on the reasoning 
module to demonstrate that reasoning-enabled segmentation not only segments implicit 
targets in open-vocabulary settings but also improves target presence detection, reduc-
ing false positives in results. The specificity results in Table 3 demonstrate that the 
reasoning module's pre-judgment of the existence of segmentation targets reduces the 
number of false positive cases. R1Seg-3D with reasoning significantly reduces false 
positives across all datasets, decreasing from 2,146 to 592 in the total dataset, while 
enhancing specificity (SPE) from 82.95% to 94.63% compared to R1Seg-3DSAM 
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(without the reasoning module). Similar notably improvements are observed on the TS, 
VerSe and IRCADB datasets. These results indicate that segmentation methods with 
reasoning capabilities, which leverage contextual reasoning and textual inputs, have 
significant potential for future applications in disease diagnosis. 

Table 3. Evaluating the effectiveness of the reasoning module. 

With/Without 
Reasoning 

Total (10439) TS (9678) VerSe (478) IRCADB (149) Others (137) 
FP↓ SPE(%)↑ FP↓ SPE(%)↑ FP↓ SPE(%)↑ FP↓ SPE(%)↑ FP↓ SPE(%)↑ 

R1Seg-3DSAM 2146 82.95 1764 84.58 191 71.45 96 60.33 95 59.05 
R1Seg-3D 592 94.63 452 95.54 73 86.75 23 86.39 44 75.69 

Effectiveness of the n-Time Loop. Our ablation study on the loop operation (n) in 
mask decoding demonstrates that iterative refinement of the segmentation mask signif-
icantly enhances performance. The loop operation, which involves feeding the embed-
ded <SEG> token and resulting mask back into the prompt encoder, improves the mod-
el's ability to refine segmentation boundaries and capture fine-grained details. Table 4 
shows that, increasing the loop count from n = 0 to n = 1 results in a substantial im-
provement in the mean F1 score from 67.08% to 72.12%, with the precision and sensi-
tivity increasing from 69.58% to 76.32% and from 69.52% to 72.13%, respectively. 
Increasing the loop count to n = 2 further improved performance, achieving a mean F1 
score of 72.32% (+0.1%) and sensitivity of 73.31% (+1.18%) over n = 1, thereby re-
ducing the risk of missing critical anatomical or pathological regions. However, when 
n = 3, the performance gains are minimal, indicating diminishing returns. These results 
demonstrate that using at least one loop (n ≥ 1) is highly beneficial, with n = 2 striking 
the optimal balance between accuracy and computational efficiency. These findings 
underscore the importance of iterative refinement for precise, reliable segmentation. 

Table 4. The n times loop operation during mask decoding. 

n-Time 
Loop 

F1(%) Pre (%) SE(%) 
Mean ACT CTOrg TS Mean ACT CTOrg TS Mean ACT CTOrg TS 

n = 0 67.08 83.40 85.41 67.51 69.58 84.25 87.03 69.59 69.52 83.38 86.18 70.05 
n = 1 72.12 91.27 87.13 72.15 76.32 92.64 89.11 75.80 72.13 90.43 87.98 72.35 
n = 2 72.32 91.41 88.03 72.23 75.44 91.89 88.40 75.01 73.31 91.35 89.49 73.33 
n = 3 72.37 91.36 88.39 72.38 75.62 91.85 88.39 75.25 73.33 91.37 90.01 73.52 

4 Discussion and Conclusion 

To advance the development of intelligent 3D medical imaging systems capable of in-
terpreting implicit clinical objectives, we propose R1Seg-3D, a reasoning-driven open-
vocabulary segmentation method designed for increased efficiency and accuracy. Our 
approach integrates state-of-the-art techniques including LLMs and LVMs, introducing 
a novel unified visual encoding framework that addresses the current challenges in 3D 
medical segmentation. Furthermore, we enhance segmentation precision through 
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sliding windows and an iterative refinement mechanism, significantly reducing mis-
judgments. Extensive experiments demonstrate that R1Seg-3D outperforms existing 
methods across multiple specific tasks, providing a robust and generalizable solution 
for diverse medical imaging applications. The success of R1Seg-3D stems from its abil-
ity to align dense visual features with textual features via a unified visual encoder, en-
suring consistent and accurate mask generation. 

In conclusion, our proposed framework addresses the limitations of existing meth-
ods, offering a more flexible and accurate approach to segmenting anatomical and 
pathological regions in 3D CT scans. This work represents a significant step forward in 
3D medical image segmentation. Future research will focus on improving the reasoning 
and segmentation of challenging targets, such as combining 3D imaging with patient 
symptom descriptions to predict and segment more complex pathological regions. 
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