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Abstract. Multi-modality magnetic resonance imaging (MRI) is widely
used in the clinical diagnosis of brain tumors. However, the issue of
missing modalities is frequently encountered in the real-world setting
and can lead to the collapse of deep-learning-based automatic diagno-
sis algorithms that rely on full-modality images. To address this chal-
lenge, we propose a unified model capable of synthesizing missing modal-
ities through any subsets of the full-modality images. Our method is a
sequence-to-sequence prediction model that predicts the missing images
by inter-modality correlation and modality-specific semantics. Specifi-
cally, we develop a dual-branch encoder, where both branches encode par-
tially masked image tokens into low-dimensional features independently.
A decoder then generates the target input images based on the fused
encoder features. To strengthen the representative ability of encoder fea-
tures, we propose a combination loss to improve the discriminative and
consistency between diverse modality features. We evaluate our method
on the BraTS 2023 dataset. Extensive quantitative and qualitative ex-
periments demonstrate the high fidelity and utility of the synthesized
images.

Keywords: Missing image imputation · Multi-modality MRI · Brain
tumor segmentation.

1 Introduction

Gliomas are a prevalent type of brain tumor that poses a significant threat to
patient well-being and quality of life. In clinical practice, multi-modality MRI
is the most commonly used diagnostic tool because it provides complementary
information about the structure and tissue of the brain. Typical used modali-
ties include T1-weighted (T1), post gadolinium contrast T1-weighted (T1c), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (Tf ). Nowadays,
deep-learning based segmentation methods [12, 3] have achieved promising per-
formance in detecting brain tumors based on full-modality MRI images. How-
ever, due to problems such as scanning time and cost, clinical diagnosis often
faces the issue of missing modalities, which greatly reduces the accuracy of these
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algorithms. For example, D2-Net [16] points out that using four modality images
can achieve a Dice score of 82.19% on the BraTS 2018 dataset [9], while the best
results using a single modality degrade to 44.97%. Therefore, the new approach
that can overcome this challenge is attractive in clinical scenarios.

There are currently two mainstream solutions. The first is developing seg-
mentation models that can adapt to various missing modalities situation [16,
10, 18]. One common idea of these approaches is to learn multiple modality-
incomplete features during training and combine them to reconstruct high repre-
sentational modality-complete features for segmentation during inference. Some
other research [19, 7, 1, 6] involves imputing the missing modality images. The
generation results can be used for both manual and automatic diagnosis. In
comparison, these methods have better interpretability and wider applications.
Early attempts [20, 17] formulated this task as a style transfer or generation
task, with the input and output modalities being fixed. One obvious problem of
these methods is the necessity to train multiple models to encompass all input-
output combinations of total m modalities, eg., 2m − 2 when using a one-to-one
model. Therefore, the unified model capable of accommodating any modality
combination and generating missing modalities has garnered more attention.

To build a unified model, it is first necessary to address the challenge of
unfixed input and output length. One intuitive solution is to build indepen-
dent encoders to handle different modalities [19, 13]. Another is developing a
single encoder-decoder model based on the self-attention mechanism [15] and
formulating the missing modality imputation task into the sequence prediction
task. The former methods can achieve better generation quality, especially when
fewer modalities are available. The latter is more straightforward in preserv-
ing the anatomical information among multi-modality images. Both methods
also developed various modules to enhance the generation quality, typically in-
cluding the entanglement and disentanglement of modality-invariant features
and modality-specific features from the modality-complete features. In general,
these methods obtain the input features through inter-modality relations, while
the generation of each modality is still independent. In contrast, we introduce
the inter-modality constraint into the generation process to improve the overall
generation quality.

In this paper, we propose a self-attention-based unified missing modality
imputation model that is capable of reconstructing four MRI modalities from
any subset of itself. We show that ensuring multi-modality images are equally
discriminative and relevant in feature space as in pixel space is important to im-
prove the quality of the generated images. To this end, we develop a dual-branch
encoder and single-decoder network architecture that leverages the correlation
between modalities and semantic information within the image to predict the
missing image. The imputation model is trained by proposed inter-modality
contrastive and consistent learning. The effectiveness of the proposed method is
evaluated on the BraTS 2023 dataset [9]. Extensive quantitative and qualitative
experiments demonstrated the high quality and utility of synthesized images.
Our codes are available at https://github.com/LcQi-mic/mod_imp.
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Fig. 1. Overview of the proposed approach. (a) The sequential encoder aims to obtain
inter-modality correlations. (b) The spatial encoder aims to obtain semantics within
images. (c) Decoder used to reconstruct missing images. (d) Inter-modality contrastive
and consistent learning.

2 Method

The proposed method employs a dual-branch encoder and one decoder con-
figuration, with the overview architecture illustrated in Fig. 1. The input and
output of generation backbone are four modality MRI images denoted as x =
{xm,m ∈ [1, 2, 3, 4]} ∈ RH×W and x̂ = {x̂m} ∈ RH×W with H × W being
the size of the 2D images. After translating xm into partially masked image
patches, the sequential masking layer simulates the modality missing by ran-
domly masking all patches belonging to 1 to m − 1 modalities to ensure at
least 1 modality are maintained. Meanwhile, the spatial masking layer randomly
masks patches of each modality with a high masking ratio, e.g., 75% in this
paper. Then, one shared patch embedding layer maps two masked patches into
image tokens (tseq, tspa) ∈ Rm×pH

res×pW
res×C , where pH×W

res = H×W
psize

is the patch
resolution and psize = 2× 2 is the patch size. The sequential and spatial branch
receive tseq and tspa to obtain low-dimensional features fseq

i,m and fspa
i,m , i is the

index of encoding stage. Finally, a decoder reconstructs the original images x̂m

based on the fusion features fi. When inference, the input of two branches are
the same tseq.

2.1 Architecture design

The encoder uses a parallel network architecture as seen in Fig. 1 (a, b). The
input tokens are reshaped and forwarded through each branch simultaneously.
We have a stack of encoding blocks in both encoder branches as well as the
decoder. Each block in the encoder consists of two transformer blocks to model
constant-range dependencies and follow one patch merging layer to reduce the
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spatial resolution and increase the number of channels by a factor of two. Similar
to U-Net [12], the encoder and decoder are skip-connected at the same encoding
stage.

The sequential branch (Fig. 1 a) predicts the missing patch features by learn-
ing the correlation information among tokens belonging to different modalities
at the same spatial location. The input sequence length is m and the trans-
former block is adopted from the vanilla vision transformer [2] with absolute
position embedding. The spatial branch (Fig. 1 b) learns the semantics within
each modality image following the masked image modeling [5] paradigm. The
input sequence length is pH×W

res and the transformer block is adopted from Swin
Transformer [8] with relative position embedding. Another goal of the spatial
branch is to provide constraints on obtained modality features which will be
introduced in the next subsection.

To combine two incomplete and complementary branch features, we add a
fusion block after the patch merging layer in each stage. Specifically, the fusion
block first adds two input features, then sequentially passes them into a spatial
attention module Mspa and a channel attention module Mcha to get the final
features fi. For convenience, given an input feature f

′

i = fspa
i + fseq

i , the overall
process can be summarised as fi = Mcha(Mspa(f

′

i )). The spatial attention is
computed as:

Mspa(f
′

i ) = Sigmoid(Conv1∗1(Conv3∗3(f
′

i ) + Conv7∗7(f
′

i )))× f
′

i (1)

where Convn×n indicates a convolutional layer with n kernel size. Given input
feature f

′′

i , the channel attention is computed as:

Mcha(f
′′

i ) = Sigmoid(ReLU(MLP (MaxPool(f
′′

i ))))× f
′′

i (2)

The convolutional block in the decoder (Fig. 1 c) is adopted from UNETR [4].
The output features are fed into four output blocks to generate images, each
is a 1× 1 convolutional layer following a LeakyReLU activation function. More
details can be found in our released codes.

2.2 Loss Function

As aforementioned, human experts can make diagnosis more accurate by utilizing
diverse imaging characteristics of various modalities. For instance, the enhancing
tumor has a noticeable increase in T1 signal on post-contrast images relative
to pre-contrast images. The surrounding non-enhancing flair hyper-intensity is
better displayed in the FLAIR signal [9]. The pixel intensity difference between
two modality images can serve as pseudo-labels for specific tissues and organs.
Although they are insufficient for training a network due to the high noise,
the offset between the two modality images between different patients always
contains information about the same anatomy. Therefore, we hypothesize that
the multi-modality image features should also have consistent and stable offsets
and propose inter-modality contrastive loss and consistent loss to achieve this
goal.
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Inter-Modality Contrastive Learning. We first make multi-modality im-
age features discriminable by using contrastive learning [11, 14]. It can learn an
embedding space in which positive pairs stay close to each other while negative
ones are far apart. In this case, the positive pair comprised features of the same
modality images obtained by two encoders, and the negative pair comprised
features of different modalities. Specifically, a global average pooling layer first
transforms the features f4,m into r4,m ∈ R4,8C . Subsequently, two linear projec-
tors map the encoder output features fseq

4,m and fspa
4,m into low-dimensional repre-

sentations rseqm , rspam ∈ R4,512. Each projector consists of a linear layer followed
by a ReLU activation layer. The Lcon is defined as:

Lcon = −log
exp(sim(rspai , rseqi ))/t)∑m
j 1j ̸=i(sim(rspai , rseqj )/t)

, (3)

where t = 0.8 is the temperature scale, 1 is the indicator function evaluating to 1
if i ̸= j. We use cosine distance to measure the similarity between two features.

Inter-Modality Consistent Learning. The inter-modality consistent loss
aims to enhance the anatomical information among different modalities. We
achieve this by making the offsets between two modality image features con-
sistent in two branches. We counted the pixel intensity difference maps of all
two-modality combinations and used Shannon entropy to measure their infor-
mation gain. The difference maps of the T1c and T2 contrasts has the highest
entropy value of 3.64 and a smaller standard deviation of 0.48. Conversely, the
T1 and Tf contrasts exhibit the least entropy value of 3.50 and a larger stan-
dard deviation of 0.53. We calculate the Lconsis between T1c and T2, T1 and T2,
Tf and T2. Specifically, we first apply a global average pooling layer to obtain
flattened features. We then concatenate the paired modality features and use a
multilayer perceptron (MLP) to derive the input features vseqij , vspaij ∈ R512. For
instance, vseq01 = MLP (Cat(Pooling(fseq

4,0 ), Pooling(fseq
4,1 ))). The Lconsis follows

the same definition as Lcon but sets the temperature t to 0.9. The positive pair
is the features in two branches obtained by the same modality combination. The
negative pair is the feature of different modality combinations.

Overall Loss Function. We use Lrec to learn the appearance of the anatom-
ical structure in each modality. It is calculated by the Mean Square Error (MSE)
in the pixel space between the original and the synthesized MRI images, given
by

Lrec =

m∑
i=1

E[||xm − x̂m||2]. (4)

Finally, our overall loss is:

L = λ1Lrec + λ2Lcon + λ3Lconsis (5)

The λ1 = 1, λ2 = 0.3, and λ3 = 0.5 are the weights for each loss term.
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Table 1. Quantitative comparison results of our method and competing methods on
the BraTS dataset.  means available real images, and # means imputed images. The
best results are shown in bold. ∗ means training without Lconsis.

Modalities PSNR ↑ SSIM ↑
T1 T2 T1c Tf Zhang MMT Ours∗ Ours Zhang MMT Ours∗ Ours
 # # # 28.72 26.77 26.65 28.02 0.712 0.542 0.637 0.648
#  # # 27.90 26.76 26.82 27.14 0.708 0.534 0.636 0.651
# #  # 28.10 26.21 26.04 27.43 0.716 0.553 0.602 0.614
# # #  28.73 27.39 27.44 28.67 0.671 0.510 0.612 0.621
# #   27.73 27.78 27.74 29.77 0.791 0.794 0.865 0.887
#   # 27.79 27.74 27.60 29.01 0.786 0.757 0.813 0.822
  # # 27.73 27.87 27.66 29.13 0.761 0.765 0.821 0.844
#  #  27.50 27.56 27.65 28.98 0.772 0.745 0.808 0.822
 #  # 27.69 27.77 27.92 29.14 0.738 0.696 0.787 0.797
   # 28.99 28.88 29.86 30.27 0.821 0.841 0.887 0.897
#    28.77 28.87 30.75 31.33 0.833 0.861 0.913 0.924
  #  30.03 30.09 30.03 30.24 0.828 0.847 0.883 0.894
 #   29.18 29.12 29.19 30.42 0.844 0.853 0.897 0.915

3 Experiments

Dataset and Implementation Details. We build a 2D dataset sampled from
the BraTS 2023 dataset Task 1. The BraTS dataset consists of 1251 annotated
scans, each case contains four modalities. The segmentation performance is eval-
uated on WT, TC, and ET regions. We randomly selected 800, 200, and 250 cases
for training, validation, and testing, respectively. We sampled 6 to 10 slices from
each 3D volume at equal spacing along the coronal direction from all tumor-
bearing axial slices. In this form, we get 6816, 1696, and 2240 paired 2D train,
validation, and test dataset.

Our method was implemented in PyTorch 2.0 on a NVIDIA A100 40G GPU.
The input size of each image modality is 256 × 256 pixels and batch size is
set to 32. All images are non-zero normalized. The data augmentation includes
random flip, intensity shift, and intensity scale with probability 0.5, 0.1 and 0.1.
Our model was trained with Adam optimizer with an initial learning rate of
1e− 4 for 100 epochs.

Competing Methods and Evaluation Metrics. We compared our model
with two missing modality imputation models and one segmentation model for
modality missing. MMT [7] utilized modality encodings and modality queries
to inject modality-specific information, which are learnable parameters for each
modality. Zhang et al. [19] proposed a GAN-based unified model which can
leverage both modality-invariant and modality-specific information and com-
bine them with hard integration and soft integration to avoid information loss.
M3FeCon [18], abbreviated as M3, treated missing modalities as masked modal-
ities, and learned supplemental features similar to masked image modeling to
form approximate modality-complete feature representations. The MMT and
M3FeCon were originally developed for 3D tasks and we re-implemented their
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Table 2. Tumor segmentation evaluation on the BraTS dataset.  means available real
images, and # means imputed images. The best results are shown in bold. ∗ means
training without Lconsis.

Modalities WT TC ET
T1 T2 T1c Tf MMT M3 Ours∗ Ours MMT M3 Ours∗ Ours MMT M3 Ours∗ Ours
 # # # 79.26 78.41 79.08 81.23 65.24 64.96 67.32 69.21 53.85 52.20 54.96 57.91
#  # # 89.11 89.23 88.24 91.23 64.49 64.50 64.68 67.65 52.51 48.29 53.33 55.73
# #  # 80.49 81.28 81.88 82.34 72.37 72.00 74.68 75.31 59.28 61.21 59.21 64.32
# # #  88.95 87.87 88.56 90.01 71.16 69.17 70.15 73.12 51.08 49.39 53.96 56.13
# #   88.19 88.01 88.14 90.31 77.56 77.60 80.06 82.11 71.43 71.26 74.34 76.12
#   # 84.72 83.82 89.88 90.43 80.29 79.63 81.31 83.42 72.86 73.19 75.20 77.64
  # # 79.89 80.78 82.20 84.24 70.71 71.68 75.59 76.21 65.05 64.40 68.22 70.12
#  #  80.08 79.52 83.86 85.71 69.59 70.47 74.10 75.43 67.56 68.70 70.97 71.24
 #  # 86.72 86.59 88.08 90.34 82.34 83.09 83.50 84.21 74.65 75.77 77.43 78.32
   # 88.59 89.24 88.20 90.93 86.07 87.70 86.52 86.93 83.45 84.49 82.09 83.78
#    91.48 92.43 90.96 92.73 86.40 86.84 86.53 87.42 80.91 80.98 82.22 84.31
  #  87.99 88.85 88.01 88.31 79.44 79.88 79.27 80.23 58.97 58.53 62.11 64.12
 #   92.48 89.10 91.14 92.55 87.22 86.84 87.16 88.23 81.92 82.31 84.86 85.21

Baseline 0.9380 0.9237 0.8692

2D versions in all experiments. We use SSIM and PSNR as the synthetic image
evaluation metrics and Dice score for segmentation evaluation.

3.1 Quantitative Evaluation

Table 1 presents the quantitative comparison results between our method and
competing methods. We report the average results on generated missing modali-
ties across all input-output combinations when one to three modalities are miss-
ing. In scenarios where only a single modality is accessible, Zhang’s method,
which employs a specialized GAN generator network, exhibits distinct advan-
tages. Our method, however, attains superior PSNR and SSIM values in the
majority of input scenarios. The advantage of our method in synthesis perfor-
mance improves with more input modalities, indicating that our method can
better utilize the inter-modality information in the inputs. Table 2 shows the tu-
mor segmentation results to validate the utility of synthetic results. Our model
improves the dice scores compared to previous state-of-the-art methods. We also
conduct an ablation study on the contribution of proposed inter-modality con-
sistency learning. The results in Table 1 and Table 2 indicate that incorporating
consistency loss increases the performance demonstrating the effectiveness of the
consistency learning.

Notably, within the context of our empirical experiments, it was observed
that the fusion block plays an essential role in the early convergence of the
sequence branch. This phenomenon was particularly evident when two to three
out of four modalities were excluded. A plausible explanation is that, due to the
relatively short length of the input sequence of the sequential branch, the inter-
modality information becomes insufficient when more modalities are missing.
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Thus, during the early convergence stage, we randomly mask only one modality
and increase the number of masked modalities in a scheduled manner.
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Fig. 2. Visual examples of synthetic T1c and Tf modality images and corresponding
segmentation results. The red boxes emphasize the tumor region.

3.2 Qualitative Evaluation

We observed the absence of T1c modality and Tf results in particularly evident
segmentation performance degradation in the ET and WT regions, respectively.
Thus we visualize the synthetic T1c and Tf images utilizing three other modalities
and their segmentation results in Fig 2. Compared with MMT, our method
produces better results with less blur and preserves more details.

4 Conclusion

In this paper, we propose a novel missing modality imputation model capable
of generating missing modality images based on arbitrary available modalities.
Our main contributions are as follows: an imputation backbone and an inter-
modality contrastive and consistent learning strategy. Our method can generate
high-quality images by leveraging the imaging characteristics of each modality
and the shared anatomical information. Through quantitative and qualitative
experiments, we have demonstrated that the generated images possess better
fidelity. Moreover, when applied to the missing modality segmentation task, our
method proves to be more robust than competing methods, thus validating the
utility of the generated images.

One of the primary limitations of our approach is its subpar performance in
scenarios where only a single modality is accessible. In future work, we intend
to address this issue by maintaining a learnable dictionary during the training
process. This dictionary can then be utilized for querying purposes when syn-
thesizing images. Additionally, we will plan to extend our method to 3D tasks.
The significant challenge lies in the contrastive loss we employed. This loss func-
tion generally requires large batch sizes to avert trivial solutions. However, due
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to memory constraints, a small batch size will lead to the failure of contrastive
learning.

Acknowledgments. This study was funded by Jilin Provincial Scientific and Tech-
nological Development Program, China. Grant 20240305040YY.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Dalmaz, O., Yurt, M., Çukur, T.: Resvit: residual vision transformers for multi-
modal medical image synthesis. IEEE Transactions on Medical Imaging 41(10),
2598–2614 (2022)

2. Dosovitskiy, A.: An image is worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929 (2020)

3. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin unetr:
Swin transformers for semantic segmentation of brain tumors in mri images. In:
International MICCAI brainlesion workshop. pp. 272–284. Springer (2021)

4. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B.,
Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In:
Proceedings of the IEEE/CVF winter conference on applications of computer vi-
sion. pp. 574–584 (2022)

5. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 16000–16009 (2022)

6. Li, Y., Zhou, T., He, K., Zhou, Y., Shen, D.: Multi-scale transformer network with
edge-aware pre-training for cross-modality mr image synthesis. IEEE Transactions
on Medical Imaging 42(11), 3395–3407 (2023)

7. Liu, J., Pasumarthi, S., Duffy, B., Gong, E., Datta, K., Zaharchuk, G.: One model
to synthesize them all: Multi-contrast multi-scale transformer for missing data
imputation. IEEE Transactions on Medical Imaging 42(9), 2577–2591 (2023)

8. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

9. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor
image segmentation benchmark (brats). IEEE transactions on medical imaging
34(10), 1993–2024 (2014)

10. Novosad, P., Carano, R.A., Krishnan, A.P.: A task-conditional mixture-of-experts
model for missing modality segmentation. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. pp. 34–43. Springer (2024)

11. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

12. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, Oc-
tober 5-9, 2015, proceedings, part III 18. pp. 234–241. Springer (2015)



10 Anonymized Author et al.

13. Sharma, A., Hamarneh, G.: Missing mri pulse sequence synthesis using multi-modal
generative adversarial network. IEEE transactions on medical imaging 39(4), 1170–
1183 (2019)

14. Tang, Y., Yang, D., Li, W., Roth, H.R., Landman, B., Xu, D., Nath, V.,
Hatamizadeh, A.: Self-supervised pre-training of swin transformers for 3d med-
ical image analysis. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 20730–20740 (2022)

15. Vaswani, A.: Attention is all you need. Advances in Neural Information Processing
Systems (2017)

16. Yang, Q., Guo, X., Chen, Z., Woo, P.Y., Yuan, Y.: D 2-net: Dual disentanglement
network for brain tumor segmentation with missing modalities. IEEE Transactions
on Medical Imaging 41(10), 2953–2964 (2022)

17. Yuan, W., Wei, J., Wang, J., Ma, Q., Tasdizen, T.: Unified generative adversarial
networks for multimodal segmentation from unpaired 3d medical images. Medical
Image Analysis 64, 101731 (2020)

18. Zeng, Z., Peng, Z., Yang, X., Shen, W.: Missing as masking: Arbitrary cross-modal
feature reconstruction for incomplete multimodal brain tumor segmentation. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 424–433. Springer (2024)

19. Zhang, Y., Peng, C., Wang, Q., Song, D., Li, K., Zhou, S.K.: Unified multi-modal
image synthesis for missing modality imputation. IEEE Transactions on Medical
Imaging (2024)

20. Zhou, T., Fu, H., Chen, G., Shen, J., Shao, L.: Hi-net: hybrid-fusion network for
multi-modal mr image synthesis. IEEE transactions on medical imaging 39(9),
2772–2781 (2020)


