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Abstract. Traditional ultrasound simulators solve the wave equation
to model pressure distribution fields, achieving physical accuracy but
requiring significant computational time and resources. Ray tracing ap-
proaches have been introduced to address this limitation, modeling wave
propagation as rays interacting with boundaries and scatterers. However,
existing models simplify ray propagation, generating echoes at interac-
tion points without considering return paths to the sensor. This can re-
sult in undesired artifacts and necessitates careful scene tuning for plau-
sible results. We propose UltraRay, a novel framework that models the
full path of acoustic waves reflecting from tissue boundaries. We derive
the equations for accurate reflection modeling across multiple interaction
points and introduce a sampling strategy for an increased likelihood of a
ray returning to the transducer. By incorporating a ray emission scheme
for plane wave imaging and a standard signal processing pipeline for
beamforming, we are able to simulate the ultrasound image formation
process end-to-end. Built on a differentiable modular framework, Ultra-
Ray introduces an extendable foundation for differentiable ultrasound
simulation based on full-path ray tracing. We demonstrate its advan-
tages compared to the state-of-the-art ray tracing ultrasound simulation,
shown both on a synthetic scene and a spine phantom.

Keywords: Ultrasound · Physics-Based Simulation · Reflection Model-
ing · Ray Tracing.

1 Introduction

Ultrasound simulation is important in medical imaging, with applications in
areas like training sonographers [7, 16], designing and testing transducers [5, 6,
11], or, more recently, generating data for training neural networks [25, 2, 1].
⋆ felix.duelmer@tum.de
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Traditional ultrasound simulators solve the wave equation using Green’s func-
tion, either with linear methods [13] or nonlinear approaches [24]. While these
methods are accurate, they are computationally intensive, as they require solv-
ing complex mathematical equations over fine spatial and temporal grids. This
makes them slow and difficult to apply for real-time applications [21], large-
scale simulations [4], or waveform inversion tasks [17]. Ray tracing algorithms
were introduced to address these limitations [18, 3]. Instead of simulating entire
wavefields, these algorithms trace individual rays through a pre-defined model
of tissue structures and parameters, allowing the computational workload to be
efficiently parallelized. Further enhancements in simulation realism have been
achieved by integrating improved scattering models [10] and utilizing Monte
Carlo ray tracing (MCRT) techniques [18, 1].

However, current ray tracing methods typically only account for the ray trav-
eling from the transducer to the scattering or reflection event, directly adding an
echo to the time-echo signal without verifying whether the ray can be received at
the sensor. Therefore, these simulators typically don’t include beamforming al-
gorithms because they assume the ray-tracing data already reflects beamformed
channel information. This simplification can lead to unrealistic reflections, in-
troducing implausible artifacts in the synthesized image, which can, e.g., impact
neural network training.

Similar challenges arise in the visible light domain as in ultrasound, including
phenomena like reflections, refractions, and scattering. To address these, phys-
ically based renderers [22] have been developed to create photorealistic images
by explicitly simulating the complete light transport process using ray tracing.
Examples of such fast and accurate simulators include Mitsuba 3 [12], which
not only delivers photorealistic forward simulations but is also built with auto-
matic differentiation, making the simulation process invertible and thus useful
for parameter or shape optimization [15, 19, 28].

Beyond achieving accurate forward modeling of image formation, the ability
to invert the process has drawn interest from the ultrasound community. Recent
approaches, such as UltraNeRF [27], combine a fast ultrasound simulation with
implicit neural representations to facilitate efficient ultrasound image synthesis.
However, by using a simplified image formation model, e.g. not considering sec-
ondary effects such as reflections, they restrict their capability to fully represent
the complexities inherent in ultrasound physics.

To address this gap, we introduce UltraRay, a framework for fast ultrasound
reflection simulation based on ray tracing (see Figure 1). Our key contributions
are as follows:

– We propose a full-path ray tracing method that tracks rays from emission
all the way to reception. By introducing a transducer sampling strategy, we
present an efficient way of returning the rays to the transducer after a scene
interaction.

– We derive the mathematical formulation for our Monte Carlo-based ray trac-
ing method and integrate a physics-informed model for tissue boundary re-
flections.
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– By incorporating a plane wave imaging acquisition scheme and a conven-
tional beamforming pipeline - including delay-and-sum beamforming, en-
velope detection, and log compression - we enable end-to-end ultrasound
simulation.

Primary Secondary

(c)(a) (b)

Fig. 1. Visualization of the simulation pipeline. a) We start be defining the virtual
scene, which includes the transducer and acquisition plane. b) Exemplary demonstra-
tion of a single ray traversing the scene. In the primary phase, a ray is emitted from
the transducer and traverses the scene. At each interaction point with the vertebrae,
secondary rays are cast toward the center of a randomly sampled transducer element.
If a secondary ray is not blocked, its contribution is added to the corresponding time-
pressure signal of that transducer element. In (c), we present the resulting B-mode
image generated by the proposed method.

2 Methodology

2.1 Ray Tracing in Ultrasound

In ultrasound imaging, our goal is to find the pressure signal P (e, t) at a trans-
ducer element e over time t. By modeling incoming pressure waves as rays, the
contribution to an element can be written as:

P (e, t) =

∫
Ω

∫
A

Pi(x, t, ωi) fd(ωi) dω da, (1)

where ωi is the direction of a ray over the hemisphere Ω, originating from point
x. The integral over the transducer surface A accounts for the spatial extent of
the element. Pi represents the incoming pressure intensity, and fd is the direc-
tivity function, which weighs the contribution of pressure from each direction,
accounting for the directional sensitivity of the transducer element.

To analyze the pressure originating from a point x, we adapt the general ren-
dering equation [14] to ultrasound in order to evaluate the incident Pi, outgoing
Po, and emitted pressure Pe at that location:

Po(x, t, ωo) = Pe(x, t, ωo) +

∫
Ω

fr(x, ωi, ωo)Pi(x, t, ωi) (n · ωi) dωi, (2)
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ωo and ωi denote the incoming and outgoing directions, and n is the surface
normal. Each ray is weighted by a bidirectional scattering distribution function
(BSDF) fr and a geometric term (n · ωi) where · represents the dot product.
In contrast to Amadou et al. [1], we explicitly include the emitter pressure Pe

modeling a complete round-trip. Because directly computing these integrals is
computationally infeasible, we use a MCRT strategy to efficiently aggregate ray
contributions.

2.2 Monte-Carlo Ray tracing

Following [1, 18], we model ultrasound simulation using MCRT. Rewriting P (e, t)
to include a stochastic sampling process, we derive:

P (e, t) ≈ 1

N

N∑
i=1

Pi(x, t, ωi) fd(ωi)

pt(ωi, a)
, (3)

where the integrals are replaced by sampling directions ωi and locations a on the
transducer surface, weighted by the directivity function fd(ωi) and the inverse
of its sampling probability pt(ωi, a). The result is averaged over N rays.

Similarly, the equilibrium of incoming and outgoing rays at a surface point
can be rewritten to:

Po(x, t, ωo) ≈ Pe(x, t, ωo) +
1

N

N∑
i=1

fd(x, ωi, ωo)Pi(x, t, ωi)(n · ωi)

p(ωi)
(4)

where the sampled direction ωi is again weighted by the inverse of its sampling
probability p(ωi), which accounts for the likelihood of sampling this direction
based on the geometrical terms and the BSDF.

2.3 Proposed approach

Ray Emission In an ultrasound acquisition, acoustic emission of specific ele-
ments is delayed to form focused, diverging, or planar wavefronts. We adopt this
approach for our plane wave imaging , adding delays based on the transmission
angle. Since rays are independent, we can emit rays with various delays for mul-
tiple angles simultaneously without them interfering in the scene. To account
for transducer directivity, we include a weighting function fd in the outgoing
pressure Po(ωo). Each ray is normalized by the number of rays N and multiplied
by a cosine term:

fd(ωo) =
1

N
(ωo · n), (5)

where ωo is the outgoing direction and n is the transducer surface normal.
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Transducer Sampling

Ray Traversal

Ray Emission

Select acquisition
mode

No

Spawn primary rays

Mark rays 
as inactive

Define origin,
direction, weight and

delay

Sample BSDF for ray weight
and direction

No

Yes

Reached
stopping
condition

Spawn secondary
rays to random

transducer elements

Yes

Reaches 
transducer

Convolve
remaining pressure
with axial signal   

Add to the time
pressure signal of

that element

Hits scene
object

Yes

No
Contribution No

Fig. 2. Flow diagram on the main parts of the ray tracing: the ray emission based
on the transducer geometry, the ray traversal through the scene, and the transducer
sampling to enhance the likelihood of the rays reaching the transducer

Ray Traversal We follow each primary ray (reflection/refraction in the medium)
until it misses all objects or exceeds a bounce limit. At each intersection, we
trigger a transducer sampling step (see next section) and then compute the new
direction and amplitude via the BSDF (see Figure 2). Similar to previous works
[18, 1], we model reflection and transmission at tissue boundaries depending on
the acoustic impedance ratio η = Z1/Z2. From the incident direction ωi and
surface normal n, we can calculate the reflected and transmitted direction using
Snell’s law to:

ωr = ωi + 2 cos θr n, ωt = η ωi + (η cos θr − cos θt)n. (6)

where the reflection angle is θr = arccos(n · (−ωi)) and the transmission angle
is θt = arccos(

√
1− η2(1− cos2 θr)). The reflection amplitude Ar follows the

Fresnel equation:

Ar =
Z1 cos θr − Z2 cos θt
Z1 cos θt + Z2 cos θr

, At = 1−Ar. (7)

To determine whether a ray reflects or transmits, we sample a random variable
y ∼ U(0, 1) from a uniform distribution and reflect if (y < Ar).

Contrary to existing works, we use a microfacet distribution to capture sur-
face roughness, modeling both specular and diffuse scattering. Rather than treat-
ing each surface as uniformly planar, it is represented as many small facets, each
with its own normal. We adopt the GGX microfacet distribution [26], widely
used in physics-based rendering [19]. In this distribution, a roughness parameter
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governs the transition between diffuse and specular behavior, varying from 0 for
a perfectly diffuse surface to 1 for a perfectly specular surface.

Transducer Sampling To increase the chance of returning a ray to the trans-
ducer, we cast secondary rays from each interaction point toward a center point
of a randomly chosen transducer element. If a secondary ray intersects a bound-
ary, we evaluate the BSDF again and factor in the probability of continuing in
the chosen direction. Each ray’s contribution is then weighted by the transducer’s
receive directivity function,

fd(ωi) =


0, if |α| > αc,
αc−|α|
αc−αm

, if αm < |α| ≤ αc,

1, if |α| ≤ αm,

(8)

where α is the angle between ωi and the transducer normal n. Angles within
αm see full reception, beyond αc see none, and intermediate angles are linearly
scaled. This can consequently be integrated into equation 3.

Phase Calculation and Signal Processing When a ray arrives at the trans-
ducer, its pressure is stored in the time-domain signal of the corresponding ele-
ment. To incorporate phase, we convolve with a sinusoid windowed by a Gaussian
function [8]:

s(t) = sin(2πfct) exp
(
−t2/σ

)
, (9)

where fc is the central frequency and σ sets the pulse width. After all rays
are processed, standard beamforming (delay-and-sum), demodulation, and log
compression yield the final B-mode image.

3 Implementation details

The implementation of the ray tracing is built on top of the Mitsuba 3 software
[12], a physics-based renderer for forward and inverse light transport simulation
of natural images. Mitsuba is written in C++ with Python bindings and of-
fers flexibility through its modular framework. Additionally, the light transport
equations are fully differentiable, enabling inverse transport simulations. The
software can be built for various renderer variants that run on either CPU or
GPU. For this work, we use the GPU variant, which leverages NVIDIA’s OptiX
rendering framework [20].

To adapt Mitsuba for ultrasound simulation, we derived custom classes in
Python and C++ for the emitter, sensor, memory block, reconstruction filter,
film, and integrator. Further details about the Mitsuba framework can be found
in its documentation5.
5 https://mitsuba.readthedocs.io/en/stable/
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For beamforming and signal processing, we utilize the Ultraspy library [9].
The ray tracing simulations are executed on a desktop PC equipped with an
Intel i7-7200 processor (20 cores) and an NVIDIA RTX 4070 Ti GPU. The code
for this framework can be found in this repository6.

4 Experiments

We compare our proposed simulator to the open-source system by Mattausch et
al. [18] (referred to as the baseline). Both simulators generate a B-mode image
for a synthetic scene and a spine phantom, and these images are compared with
real ultrasound data acquired using a Siemens Juniper Acuson (5C2 convex
probe, 5MHz center frequency, 128 elements, 70°opening angle) with the object
of interest submerged in a water bath. To ensure consistency between the real
and synthetic setups, we perform a CT scan of the spine phantom, convert the
scan into a mesh using ImFusion7, and create a virtual scene in Blender8. For
the synthetic scene, the object of interest is 3D-printed. Small misalignments
remain, limiting the comparison to qualitative observations.

Our simulator employs a 25-angle plane-wave scheme ([-30°,30°]), 5 MHz
center frequency, 128 elements, 90 dB dynamic range, 50 MHz sampling, 5 cy-
cles, and a 4 mm elevational beam width usual in conventional ultrasound sys-
tems [23]. Rays are traced up to 20 cm, with a maximum of 10 bounces per
ray. Each element emits 100,000 rays, resulting in approximately 13 million rays
emitted into the scene simultaneously, completing in about 1 s. Where possible,
the baseline uses matching parameters (e.g., 5 MHz center frequency). We set
2° for the cutoff and beamwidth angles in the directivity function.

Fig. 3. Comparison of reflections created based on scanning a cylinder with a cutout
as shown in a). b) shows a real acquisition, while c) represents the baseline and d)
UltraRay.

6 https://github.com/Felixduelmer/UltraRay
7 https://www.imfusion.com/
8 https://www.blender.org/
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In the synthetic scene (Fig. 3), a cylinder with a cutout on one side was
scanned, and its surface was configured to be perfectly diffuse. Due to the design
of the cylinder, the likelihood of returning rays/waves to the transducer is small.
This behavior is evident in both the real acquisition and our simulator, where
only minor reflections appear beneath the opening. In contrast, the baseline
model records an echo at every scene interaction, resulting in an unrealistically
strong reflection below the opening.

For the vertebra, we apply the bone preset from the baseline [18], using an
acoustic impedance value of 7.8 and set an acoustic impedance value of 1.54 for
water (with zero scattering). Setting a roughness value of 0.5 in the microfacet
distribution yields realistic bone reflections.

(a) (b) (c)

Fig. 4. Comparison of (a) real acquisition, (b) baseline simulator, and (c) UltraRay.
The orange box highlights strong unrealistic reflections observed in the baseline, which
are absent in both the real acquisition and UltraRay.

Figure 4 a) shows real data with noise and water-bath reverberations. Both
simulators 4b) and c) capture the vertebra’s geometry, although UltraRay more
closely matches real intensities. The orange box highlights unrealistic reflections
in the baseline simulator, produced when rays bounce off the surface above
the highlighted region and intersect the spinous process (the elongated struc-
ture close to the transducer). Because this structure is nearly orthogonal to the
transducer, those rays should exit the scene. However, the baseline simulator
still records them as echoes, whereas they are absent in UltraRay and the real
acquisition.

5 Discussion and Conclusion

The presented simulator lays a foundation for fast physics-based reflection mod-
eling in ultrasound simulation using ray tracing. At its current stage, the sim-
ulator effectively models surface interactions at tissue boundaries and can be
naturally extended to include scattering within heterogeneous tissue and atten-
uation, based on its ray tracing and transducer sampling framework. Currently,
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we restrict the opening angle of transducer elements during the transducer sam-
pling strategy to enhance image quality. While this constraint reduces noise, it
also limits the simulator’s ability to replicate realistic acoustic interactions, as
real transducers with broader directivity can still capture off-axis returns and
maintain visibility in partially occluded regions. Exploring methods to manage
noise without sacrificing a wider opening angle would further improve the simu-
lator’s versatility and realism, making it more applicable to a broader range of
ultrasound imaging scenarios.

In summary, we introduce UltraRay, a framework that integrates a Monte
Carlo-based ray tracing method for enhanced reflection simulation in ultrasound.
We propose a novel transducer sampling strategy that efficiently returns rays to
the transducer after scene interactions. By incorporating a plane wave imaging
acquisition scheme along with a conventional beamforming pipeline, we enable
end-to-end ultrasound simulation. Built atop a modular, differentiable physics-
based rendering framework, UltraRay establishes a foundation for future ad-
vancements in ultrasound simulation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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