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Abstract. In medical imaging, the evaluation of segmentation meth-
ods remains confined to a limited set of metrics (e.g. Dice coefficient
and Hausdorff distance) and annotated datasets with restricted size and
diversity. Besides, segmentation is often a preliminary step for extract-
ing relevant biomarkers, accentuating the need to redirect evaluation
efforts towards this objective. To address this, we propose an original
methodology to evaluate segmentation methods, based on the genera-
tion of realistic synthetic images with explicitly controlled biomarker
values. Image synthesis is based on Stable Diffusion, conditioned by ei-
ther a 1D vector (clinical attributes or latent representation) or a 2D
feature map (latent representation). We demonstrate the relevance of
this approach in the context of myocardial lesions observed in cardiac
late Gadolinium enhancement MR images, controlling the image synthe-
sis with segmentation masks or infarct-related attributes, among which
size and transmurality. We evaluate it on two datasets of 3557 and 932
pairs of 2D images and segmentation masks, the second dataset being for
testing only. Our conditioning not only leads to very realistic synthetic
images but also brings varying levels of task complexity, a must-have to
better assess the readiness of segmentation methods.
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1 Introduction

Public datasets from specialised challenges offer valuable insights into the perfor-
mance of state-of-the-art machine learning methods. However, they often suffer
from design issues involving the data and the evaluation metrics [13|, lowering
the enthusiasm about the reported results. In cardiac MRI segmentation, these
drawbacks are pronounced when quantifying complex structures, especially when
anatomical contours are of moderate quality. This is particularly critical in my-
ocardial infarct segmentation, which is typically performed on late gadolinium
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enhancement (LGE) MRI [2]. In LGE images, myocardial infarcts appear as hy-
perintense (white) regions within the hypointense (black) healthy myocardium.
Lesions can substantially vary from small areas that are difficult to detect to
larger ones that may be misidentified as the ventricular cavity. Additionally, im-
age contrast depends on the acquisition parameters, leading to cases with highly
variable and complex appearances. Given these limitations, the question arises of
how segmentation quality can be evaluated effectively beyond traditional metrics
such as the Dice coefficient and the Hausdorff distance (HD).

Among the plethora of deep learning segmentation methods, nnU-Net 3|
emerged with excellent performance across a wide range of segmentation tasks
[1]. Tt also stood out in recent challenges specific to myocardial infarct segmen-
tation, such as MYOSAIQff and EMIDEC [12]. However, although these reports
reveal limitations of the segmentation both on the myocardium and the lesions
inside (which can be subtle and of potentially complex shape), anatomical ac-
curacy was not explicitly considered in the evaluation. A recent survey that
evaluated nnU-Net on a broad range of cardiac MR images from public chal-
lenges [5] also underscored the need for better datasets (larger and more varied,
mainly) to assess the actual relevance of this method for clinical practice.

On many applications, among which cardiac MRI, diffusion models [6] are
a very promising alternative to GANs to synthesize highly realistic medical im-
ages [14]. They push forward the generation of synthetic datasets while over-
coming two major challenges: real data sharing restrictions, and data scarcity
for training or evaluation. The state-of-the-art in cardiac MR image generation
is Stable Diffusion [20], which accelerates the diffusion process by taking advan-
tage of a latent representation. Moreover, Latent Diffusion Models (LDM) can
be conditioned on various inputs, such as textual descriptions or spatial layouts,
enabling precise control over the generated images. This conditional capability is
very advantageous for medical imaging, where the synthesis of anatomical struc-
tures or pathological features can be explicitly guided. However, conditioning
over geometrical attributes [3|, a posteriori [18] or via textual input [21] can be
difficult and current solutions have limited clinical usefulness.

In this work, we propose a complete and effective method based on condi-
tioned latent diffusion to generate synthetic images based on clinically relevant
attributes, which goes beyond these limitations. It allows the controlled gen-
eration of specific populations, an asset we specifically exploit to revisit the
evaluation of segmentation methods. A total of 3557 pairs of 2D images and
segmentation masks from the M1-M12 subset of the MYOSAIQ challenge were
used (3163 pairs for training), while 932 pairs from the D8 subset were reserved
for testing. With this, segmentation remains a preliminary step for extracting
relevant biomarkers, and its evaluation is effectively reoriented towards the rel-
evance of the extracted biomarkers, beyond the use of the Dice coefficient and
Hausdorff Distance. Our main contributions are three-fold:

* lhttps://www.creatis.insa-lyon.fr/Challenge /myosaiq/platform.html
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Fig. 1. Overview of the pipeline we propose to evaluate segmentation methods (c).
Realistic images are generated by latent diffusion (a), conditioned by different strategies
that consider segmentation masks or clinical attributes (b).

— We design a complete pipeline (see overview in Fig based on conditioned
latent diffusion models to generate task-oriented datasets for the evaluation
of segmentation methods, with a focus on clinical attributes,

— We specifically compare conditioning strategies to reach physiologically rel-
evant image generation,

— We thoroughly evaluate this methodology both qualitatively and quantita-
tively on a large variety of image configurations.

2 Methods

2.1 Background knowledge

Realistic synthetic images are generated by latent diffusion (Fig). Diffusion
models are a class of generative models that synthesize data by gradually trans-
forming a simple noise distribution into structured samples through a learned
denoising process (DDPM [6]). They consist of two main stages: forward dif-
fusion and reverse denoising. The forward process progressively corrupts a real
data point xy by adding Gaussian noise, x; being the noisy image at timestep
t. The reverse process, performed by a neural network of parameters 6, aims to
iteratively remove noise from the final corrupted state x7 and reconstruct the
original data distribution characterized by its mean and covariance.

Here, we specifically rely on latent diffusion [20]|, which extends standard
diffusion, operating in a learned latent space as opposed to the raw image space.
The diffusion process is applied in this latent space, producing zp given an
encoder E that maps images to a compressed latent representation z = E(x).
The reverse process then reconstructs z, which is subsequently decoded into
an image by a decoder D. This approach reduces memory requirements and
enhances training efficiency, making it particularly effective for conditioning.

2.2 Conditioning Latent Diffusion Models

The generation of physiologically relevant synthetic images is achieved by prop-
erly conditioning the latent diffusion. We rely on the Stable Diffusion frame-
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work [20], which minimizes E, ¢.ar(0,1) [||e — €g(z,t, (:)||2 , where c is the condi-
tioning vector, € is the real noise sampled from a standard normal distribution,
and €y is the noise predicted by the neural network, parameterized by 6.

In our study, we compare three conditioning strategies (see Fig), each
being tailored to our application: (1) incorporating a 1D vector into the cross-
attention mechanism, (2) with a 2D representation from the ControlNet method,
or (3) by concatenating a 2D feature map with the latent noise zr.

In strategy 1, the model is either conditioned with three clinically relevant
scalar attributes and one geometrical scalar (strategy 1.1), or a latent vector
from a representation learning method trained on segmentation maps (strategies
1.2 and 1.3). The clinical attributes (see details in Sec consist of transmu-
rality, infarct size, and endocardial surface length, and the geometrical scalar
stands for the slice position along the sagittal axis. The latent vector is obtained
from a Variational Autoencoder (VAE / strategy 1.2) [11] or an Attribute-based
Regularized VAE (AR-VAE / strategy 1.3) |16]. The AR-VAE introduces ex-
plicit regularization in its latent space, ensuring that specific latent dimensions
are correlated with the selected attributes. The cross-attention mechanism from
Stable Diffusion is used to condition the LDM by modulating the key and value
matrices of the query-key-value attention with the chosen 1D vector.

In strategy 2, we employ the ControlNet method [23|, a recent plug-and-play
approach that enables fine-tuning of the LDM with multi-conditional inputs.
Here, only 2D feature maps derived from the segmentation maps are used to
condition the model.

Finally, strategy 3 consists of incorporating a 2D latent representation of
segmentation maps (extracted from the AutoEncoder of Stable Diffusion) and
concatenating it with the latent noise representation z¢ [4].

2.3 Evaluation of segmentation methods

We use the following three infarct characteristics and one geometrical image
attribute to condition the diffusion of strategy 1.1:

— Infarct size: The proportion of pixels classified as infarct.

— Transmurality: The extent of infarct from endocardium to epicardium, es-
timated as the mean of the segmentation map over sections of 10°, and
averaged across the sections where infarct is present.

— Endocardial surface length (ESL): The proportion of pixels near the endo-
cardium (radial coordinates lower than 25%) where infarct is present.

— Sagittal axis: Slice position along the sagittal axis, ranging from the apex to
the base of the heart (excluding slices with myocardial opennings).

In addition, a larger variety of generated images is obtained by artificially
rotating the segmentation map used in strategies 2 and 3.

Given the relevance of the generated images with respect to the conditioning
on these attributes or the segmentation masks (see details in Sec|3.3)), we propose
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to revisit the evaluation of segmentation methods, by directly comparing the
infarct attributes to the ones extracted from a segmentation of the synthetic
images by a given segmentation model (Fig). Agreement with the original
attributes is quantified by the linear regression coefficient 2. We also report
standard metrics (Dice coefficient and HD), evaluated on both subsets (M1-M12
and D8) for strategies 2 and 3, which are based on segmentation masks.

Finally, we report the performance of two clinical experts at labelling real
and synthetic images among randomly selected samples, to better evaluate the
realism of the generated images.

3 Experiments and Results

3.1 Data and preprocessing

We used the data from the public challenge MYOSAIQ®, which was designed to
evaluate automatic segmentation methods for quantifying myocardial infarction
lesions across different phases of disease progression. Data consisted of pairs of
LGE MRI images and their respective segmentation masks from the same cohort
at 1 and 12 months after the infarct (M1 and M12 subsets), and another cohort
at 8 days after the infarct (D8 subset). We divided the data as:

— Training set: 85% (N = 172) of patients from the M1 and M12 subsets,
resulting in 3163 slices.

— Validation set: 5% (N = 10) of patients from the M1 and M12 subsets,
resulting in 139 slices.

— Testing set: 10% (N = 21) of patients from the M1 and M12 subsets +
N = 121 patients from the D8 subset (exluding slices with microvascular
obstruction), resulting in 255 + 932 slices.

3.2 Implementation details

For the Stable Diffusion and conditioning model, we used the implementation
provided by MONAI [17|. For the segmentation method, we used the nnU-Net
framework to automatically configure a 2D U-Net architecture based on the input
data characteristics. The model was trained with a batch size of 50, optimizing
a combined cross-entropy and Dice loss function using the SGD optimizer, a
PolynomialLR scheduler, and a learning rate of 0.01. The architectures of both
autoencoders (Stable Diffusion and the conditioning model) were set with the
KL-reg variant and a MSE loss, similar to the original paper, except using a
single-channel latent representation and processing input images of 128 x 128
pixels that were downsampled to 32 x 32 pixels. For the LDM, the architecture
consisted of the following components: 1 residual block, 2 downsampling blocks
with 32 and 64 channels, and an attention block with 64 head channels in the
final layer. The model was trained with the following hyperparameters: a batch
size of 32, a learning rate of 2¢ — 5 using the Adam optimizer, 1000 timesteps for
the denoising process, a linear beta schedule, a scale factor of 1, and a total of
5k epochs (500k steps). All models were trained on a NVIDIA RTX A600 48GB.
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Table 1. Comparison of different conditioning strategies for the LDM: with 1D vectors
(the clinical attributes or the latent vectors from a VAE or AR-VAE) and with 2D
feature maps (from ControlNet or the AutoEncoder from Stable Diffusion). Baseline
stands for comparison with the original segmentations. Bold stands for the best results.

Method Data Linear regression (r?) 1 FID |
Transmu ES[E| Infarct size Real/Real Real/Synth
Baseline train Real 0.98 1.00 1.00 - -
Baseline val Real 0.87 0.92 0.93 - -
Baseline test Real 0.72 0.84 0.80 - -
(1.1) Attributes Synth 0.38 0.61 0.59 29.8 83.4
(1.2) VAE Synth 0.26 0.38 0.46 29.8 81.7
(1.3) AR-VAE Synth 0.35 0.44 0.49 29.8 91.8
(2)  ControlNet Synth 0.64 0.78 0.80 29.8 79.1
(3)  AutoEncoder Synth  0.77  0.90 0.90 29.8 86.7

3.3 Evaluation of segmentation methods

Evaluation on synthetic images We first applied the nnU-Net to the syn-
thetic images generated by our method, and compared the clinical attributes
extracted from the nnU-Net segmentation to those used for conditioning. Ta-
ble [I] summarizes the linear regression coefficients obtained on the three infarct
attributes for the different conditioning strategies. It also reports the Fréchet In-
ception Distance (FID), which is in line with the literature [1521]. Our approach
provides a more expressive representation of the segmentation data, while being
independent of textual input conditioning. This property explains its capacity
to better follow the conditioning attributes.

Since the synthetic images generated using ControlNet and our method effec-
tively adhere to the segmentation conditioning, we can compare both the original
and generated segmentations. This enables the evaluation of segmentation meth-
ods using conventional metrics, as shown in Tab[2]

Figure [2| illustrates this with a synthetic image (generated with strategy 3,
which corresponds to the best results in Tab along with its corresponding
segmentations. It highlights the ability of our approach to maintain conditioning
fidelity and its potential for evaluating the quality of segmentation methods.

Comparison with the original segmentations (baseline) For baseline
comparisons, we applied the nnU-Net to the images from the training, vali-
dation, and testing sets (M1-M12 subset), and compared the infarct attributes
extracted from the segmentation output to those obtained from the ground truth
segmentations (Tab first three rows). On the testing set, the linear regression
coeflicients were 0.72, 0.84, 0.80 for transmurality, endocardial surface length,
and infarct size, respectively. The Dice coefficient was 0.84+0.03 and 0.65+0.18
for the myocardium and infarct respectively, aligning with the performance re-
ported by participants of the challenge [191/22]. These results indicate that, while

5 ESL: Endocardial Surface Length, see definition in Sec
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Table 2. Evaluation of ControlNet and AutoEncoder conditioning on synthetic images
using conventional metrics (for strategies 2 and 3, which involve a segmentation mask).
Bold stands for the best results on the M1-M12 dataset, for which baseline is available.

Method Subsets Dice 1 HD |
Myocardium Infarct size Myocardium Infarct size
Baseline test M1-M12 0.84 £0.03 0.65+0.18 51+1.9 19.6 + 14.1
ControlNet D8 0.72+£0.10 0.524+0.24 124+85 16.5£13.9
ControlNet M1-M12 0.76 +£0.11  0.56 +0.26 7.8+£5.9 14.2 £14.8
AutoEncoder D8 0.78+0.08 0.63+0.20 11.0£86 13.2+13.5
AutoEncoder M1-M12 0.80+0.08 0.61+0.21 7.1+£5.2 13.2+13.7
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Fig. 2. Difference between the original segmentation used for the conditioning with
strategy 3 and the generated segmentation from the nnU-net model.

there is still room for improvement in terms of overall segmentation accuracy,
nnU-Net demonstrates strong performance in preserving clinical attributes.

Qualitative assessment of synthetic images realism Figure [3| shows rep-
resentative images generated with strategy 3, from segmentation masks covering
a broad range of clinical attributes. Such masks were identified beforehand as
the ones for which a given characteristic is the closest to a desired value (e.g.
transmurality = 50%). The generated images are anatomically coherent and
accurately reflect the clinical attributes, underscoring the effectiveness of our
conditioning. In addition, the incorporation of segmentation maps from other
datasets (e.g. the D8 subset) or the application of transformations such as rota-
tion can further enhance the diversity of the generated infarct patterns.

We systematically checked that there was no overfitting to real samples across
all conditioning methods, by identifying the closest training image for each gen-
erated image and qualitatively assessing their distinctiveness.

Finally, two clinical MRI experts labeled synthetic images (generated with
strategy 3) on a dataset of 100 shuffled real and synthetic images, and another
dataset of 100 pairs of real and synthetic images generated from the same seg-
mentation mask. Their respective accuracies were 68% and 88% (expert 1) and
45% and 67% (expert 2), highlighting the realism of the synthetic images.



8 R. Deleat-besson et al.

Apex

Sagittal axis

Surface Length Transmurality

Endocardial

Rotation

Fig. 3. Representative samples generated with strategy 3, based on segmentation maps
covering a geometric and two clinical attributes, and an artificial transformation.

4 Discussion

We proposed a pipeline to generate very realistic synthetic images conditioned on
clinically relevant attributes, which we exploit to evaluate segmentation models
in a novel manner. Extensive experiments showed that our method produces
anatomically coherent synthetic images that accurately reflect clinical attributes,
enabling the assessment of segmentation methods across varying levels of task
complexity. These contributions have strong potential to mitigate challenges
related to real data scarcity and sharing restrictions in medical imaging.

While our method effectively conditions the generated images on clinically
relevant attributes, a notable limitation is the lack of texture variability. This
can be attributed to the strong influence of conditioning, which constrains the
flexibility of the generated images. Specific techniques have been proposed to
mitigate this |7], which we will integrate in future work. Furthermore, the limited
variability in segmentation maps remains a challenge. This could be addressed by
generating synthetic segmentations, either through a user interface or a neural
network, guided by clinical attributes. Such an approach, which is beyond the
scope of this work, would provide a more diverse generation of cardiac LGE
images, and better robustness of the synthetic dataset.

Another limitation of our approach is the size of the challenge dataset, as
diffusion models have been shown to exhibit data memorization when trained on
limited data |10]. We have ensured that our model does not memorize the training
data by computing the MSE between each synthetic image and all training
slices, identifying the closest one, and comparing them qualitatively. However,
a more diverse population with varying textures would enhance generalization
and improve the diversity of the generated images. To address this, future work



Controllable latent diffusion to evaluate cardiac segmentation methods 9

will explore the integration of additional datasets or MRI sequences to improve
the robustness and generalizability of the model.

Finally, we have demonstrated that clinical attributes can serve as a valuable
metric for assessing the performance of a segmentation method. Further analysis
of the correlations between Dice scores from various segmentation methods and
their associated clinical metrics could strengthen the validation of these models.
It would also be relevant to investigate uncertainty methods [9] providing in-
sights into the calibration of the segmentation method while offering reliability
measures for both the segmentation maps and the computed clinical attributes.

Code and data availability The data we used come from a public challenge (MYO-
SAIQE])7 with restricted access provided by the organizers. The code for our proposed
pipeline is publicly availabhﬂ
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