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Abstract. Domain shift is a critical problem for artificial intelligence
(AI) in pathology as it is heavily influenced by center-specific condi-
tions. Current pathology domain adaptation methods focus on image
patches rather than whole-slide images (WSI), thus failing to capture
global WSI features required in typical clinical scenarios. In this work,
we address the challenges of slide-level domain shift by proposing a Hi-
erarchical Adaptation framework for Slide-level Domain-shift (HASD).
HASD achieves multi-scale feature consistency and computationally ef-
ficient slide-level domain adaptation through two key components: (1) a
hierarchical adaptation framework that integrates a Domain-level Align-
ment Solver for feature alignment, a Slide-level Geometric Invariance
Regularization to preserve the morphological structure, and a Patch-level
Attention Consistency Regularization to maintain local critical diagnos-
tic cues; and (2) a prototype selection mechanism that reduces com-
putational overhead. We validate our method on two slide-level tasks
across five datasets, achieving a 4.1% AUROC improvement in a Breast
Cancer HER2 Grading cohort and a 3.9% C-index gain in a UCEC sur-
vival prediction cohort. Our method provides a practical and reliable
slide-level domain adaption solution for pathology institutions, mini-
mizing both computational and annotation costs. Code is available at
https://github.com/TumVink /HASD.
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1 Introduction

Digital pathology has experienced significant attention in recent years, driven
by the widespread adoption of whole-slide imaging (WSI) scanners and rapid

* Corresponding author: peter.schueffler@tum.de
! #These authors contributed equally to this work.


https://github.com/TumVink/HASD

2 Liu et al.

(@) , ROBEES
3 c Q ﬁé A = V..fv‘.J o o/p o
4 X
o g O O Class 1 Patches Q Q o
o [0 O Class 2 Patches
R <> Label matching
© Source Classifier
o Target domain
> Source domain R
- = e M e = M e e = e o o o o = = -
4(c) R )
1 [ et b N T
_— e : S :
g g ”,1 /. F o v s N e
] . temmmmm- !
. :;arChlcal 32 Class 1 Slides \
23T aption ! Class 2 Slides Transport the slide
n < Label-fee matching as a whole.
Target domain
> Source domain N

Fig. 1: (a)(b): Existing methods rely on patch-level labels from the source domain
and pseudo labels from the target domain for patch-level domain adaptation.
(¢)(d): In slide-level tasks, patches lack individual labels. We propose a hierar-
chical adaption framework that leverages domain-level alignment solver with
slide-level structure and patch-level diagnostic features preserved.

progress in artificial intelligence (AI) research [15]. This trend has facilitated no-
table advancements in many Al-based pathology tasks [28/6]. However, a major
challenge in pathology is domain shift, arising from differences in pathology
centers, including imaging variances (varying staining protocols, digitization
procedures), label discrepancies (patient populations), and other factors. Do-
main shift can downgrade model performances when transferring a model to a
different clinical site, potentially compromising patient safety [TTJTI324126].

Domain adaptation (DA) is a method to mitigate domain shift commonly
used in histology image analysis, leveraging adversarial training or generative
models [SIQT3IT7IIRI22/5]. By extracting domain-invariant features or synthe-
sizing target-like samples, DA helps to align distributions between different
datasets, improving model robustness and generalization. However, most meth-
ods focus on patch-level adaption, making them misaligned with real-world
applications where clinical decisions require a global understanding of the slide
(e.g., cancer grading or survival prediction) that patch-level adaptation meth-
ods fail to capture. An intuitive approach to extend patch-level DA methods to
the slides-level is by decomposing slide-level tasks into many patch-level predic-
tions [21I7], applying DA at the patch level, and then aggregating the slides-
level results. However, this often requires extensive patch-level annotations from
pathologists, which is very time-consuming. Another naive approach aggregates
patch embeddings via simple integration techniques (e.g., mean pooling) [I].
However, this treats all patches equally, failing to emphasize diagnostically rel-
evant regions.
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Instead, we propose to realize slide-level pathology DA by adopting the
more adaptive attention-based aggregation (ABMIL). This presents two major
challenges: (1) The distortion of multi-scale feature distributions: The
success of ABMIL relies on the domain-level feature distributions, intra-slide
patch relations, and patch-level attention patterns. Without a structured adap-
tation framework, DA can distort slide morphology and misalign critical diag-
nostic features. (2) Computational and structural challenges: The large
number of patches per slide, varying across different slides, introduces significant
computational overhead, necessitating an efficient adaptation strategy.

To solve these problems, we propose in this work an efficient Hierarchical
Adaption framework for Slide-level Domain-shift (HASD). Specifically, HASD
achieves multi-scale feature consistency and computationally efficient DA through
two key components (Fig. : (1) Hierarchical Adaptation Framework:
Domain-level Alignment Solver, where an entropic Sinkhorn-Knopp solver [3]
ensures effective alignment of feature distributions between domains; Slide-level
Geometric Invariance Regularization, ensuring that slides are adapted as a whole
without structural distortions; Patch-level Attention Consistency Regulariza-
tion, which stabilizes domain adaptation by ensuring critical diagnostic features
remain consistently focused across domains. (2) Efficient Prototype Selec-
tion: To mitigate the computational burden of the HASD, we select the K most
informative prototypes per slide, reducing redundancy while preserving essen-
tial slide-level information. Patch-level features are extracted using a pre-trained
foundation model (UNI) [2], ensuring robust representation learning.

We demonstrate our method’s DA capabilities in addressing imaging vari-
ances and label discrepancies with two slide-level tasks across five datasets.
Compared to SOTA methods, our hierarchy adaption framework achieves an
average 4.1% AUROC gain for Breast Cancer Grading and a 3.9% C-index
gain in UCEC Survival Prediction task, without requiring additional patholo-
gist annotations. As such, our method provides a practical solution for pathology
institutions seeking to transfer models from a source center to a target center
while addressing domain shift, ensuring reliable adaptation with minimal com-
putational overhead and annotation costs for slide-level tasks.

2 Methods

2.1 Problem Definition

Multiple Instance Learning. In a slide-level task with a cohort of NV slides,
each slide is treated as a bag B containing a different number of P patches ex-
tracted by a pretrained encoder into vectors {ry,72,...,7p} € RM . Under the MIL
assumption, each slide B carries a single label y (e.g., a cancer diagnosis), while
individual patches lack direct labels. ABMIL [I0] learns an attention mechanism
Atten(-) to aggregate the set of patch features into a slide-level prediction g.

Slide-Level Domain Shift. We consider two domains: a source domain R5"¢
where the model is trained, and a target domain R!9! where the model is tested.



4 Liu et al.

/ (a) Hierarchical Adaption for Slide-level Domain-shift \/ (b) OOD Inference \
“(a1) Prototype Selection . .~ (a.2) Hierarchical Adaption . HASD Inference | ( Raw Inference

Source slides Target slides Source domain R Target domain Rt { } { }
- E]:«} e } ¢
Slide-level <. 1 Domaindevel A
| oy § HASD
Patches Adaption & ngErs :
—>
Wi iz T(Xee) | J
: ® | . *
UNI Model Attention : Attention
Prototypes in Feature Space l Patch-level i MLP
| {71 |
* L Atten(X o) Atten(T(Xyre) | \J Her2 Low, |Her2 High gg/

Fig.2: HASD is designed for scenarios where UNI model extracts the patch
features from both centers, and the attention aggregation with the MLP classifier
are trained on the source domain. (a): The training process of HASD includes
the selection of label-free prototypes in each slide and domain adaption in the
hierarchical framework, including domain-, slide- and patch-level regularization.
(b): Inference with or without HASD.

Slide-level domain shift cause the distribution of features in R*" to differ from
that in R%?!. Formally, we represent the source and target domains as:

sre __ src .8rc src tgt __ tqt tgt tagt
R ={r{'{, r1s,..., r; 0}, RO ={r’], rf%,..., )9},

where ry"7 denotes the pt" patch vector of the n* slide.

Optimal Transport (OT) [20] provides a solution for learning a mapping be-
tween R*"¢ and R'"' while minimizing the overall cost: v ¢ (R, R%"), with
¢(+, ) measures the feature distance (e.g., cosine similarity) and v matches sam-
ples from source to target.

Traditional OT is not well-suited for pathology slide-level domain adaptation,
as it incurs significant computational overhead [2725] and treats each patch as
an isolated point, thereby ignoring the structured slide morphology and fail-
ing to preserve multi-scale feature consistency [I4]. In the following section, we
introduce our method to address these challenges.

2.2 Hierarchical Alignment Framework

Domain-level Alignment Solver (DAS). Instead of directly using OT for
domain adaptation, we propose optimizing a transformation function 7' that
maps R®" into a transition domain while minimizing the transport costs be-
tween T(R57¢) and R, To efficiently compute the transport costs, we adopt a
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Sinkhorn-Knopp (SK) solver [3] by introducing an entropic regularization term
H(). Besides image variance, label discrepancy also poses a further challenge in
slide-level domain adaptation. To this end, we further introduce a partial mass
relaxation Rpartial(77), allowing for samples to be excluded from matching by re-
laxing the marginal constraints via Kullback—Leibler (KL) divergence. Accord-
ingly, we learn the transformation 7" under the guidance of the total transport
cost:

Lpas(T,vy) = Z%‘j ¢ (T(Rsrc)a Rtgt) + eH(y)) + TRpa1~tia1(7)7
%,

where v and 7 control the strength of entropic regularization and partial relax-
ation, respectively. In our method, + is fixed as 0.001, and we only activate the
partial mass relaxation term (i.e. set 7 # 0) when label prevalence discrepan-
cies occur across centers. In such cases (Fig. |4] for an example), we refer to the
resulting approach as Partial DAS.

Slide-level Geometric Invariance Regularization (SGIR). While DAS
allows us to handle domain-level disparities, it operates on each patch indepen-
dently, and we risk losing the local relationship between patches that belong to
the same slide. Therefore, rather than treating patches as isolated points during
alignment, we treat the slide as a whole and incorporate a slide-level constraint
to enforce structural consistency in feature space. For this, we define our SGIR
loss as:

N
Lsam(T) = Y ||G(B) — G(T(By9))||lp, where B3 ={rys,...,rirc},

where || - || denotes the Frobenius norm and the Gram matrix G(X) = XX7.
By preserving patch pairwise distance within the same slide, we ensure the slide-
level structural consistency.

Patch-level Attention Consistency Regularization (PACR). While domain-
level and slide-level constraints preserve global structure, the adaptation can be
over-warped, causing clinically essential patch-level local cues to be overlooked
[14]. To address this, we introduce PACR to preserve the aggregator’s patch-
level attention distributions learned on the source domain. Intuitively, a patch
with high attention in the source domain should maintain high attention after
transformation by 7. Formally, we define

N P
Loacr(T) = Y 3 || Atten(T(rs7e)) — Atten(r3ro)||”.
n p

We thus form the total optimization objective as:

Liotal(T,7) = Lpas(T,y) + MLsair(T) + A2 Lpacr(T),
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with A\; and A balancing the domain alignment and regularization.

Overall, with our hierarchical adaption framework, we learn a transformation
function 7' : R*"¢ — R, by minimizing the total objective function L;ytq;, SO
that the model trained on R*"¢ generalizes better to R9¢.

2.3 Label-free Prototype Selection

To be computationally efficient, we cluster each slide’s patches into k£ groups and
use the clusters’ centroids as label-free prototypes (see ablation for k-selection)
before applying HASD. This strategy significantly reduces complexity while pre-
serving crucial slide-level information for alignment. An overview of our method
is illustrated in Fig

3 Experiments and Results

We validate our method with two slide-level tasks across five datasets:

Breast Cancer HER2 Status. The prediction of the HER2 status in breast
cancer from hematoxylin & eosin (H&E) stained tumor tissue is a challeng-
ing slide-level task [I2]. We use AUROC to evaluate our method on multi-
institutional breast cancer slides from three centers: Yale Hospital (Yale, n=192)
[7], The Cancer Genome Atlas (TCGA, n=182) [23], and Technical University
Munich hospital (TUM, n=77).

UCEC Survival Prediction. Uterine corpus endometrial carcinoma (UCEC)
is a significant form of gynecological cancer [19]. Reliable survival prediction
for personalized treatment planning is limited by domain shift across different
centers. To evaluate our method, we employ UCEC cases from two indepen-
dent centers: TCGA-UCEC (n=504) and CPTAC-UCEC (n=205) [4]. We
use disease-specific survival (DSS) and the Concordance Index (C-Index) to
evaluate performances. In this cohort, domain shift arises not only from image
variances (scanners, standings, etc.) but also from label prevalence variances
(Fig. ), posing an additional challenge for adaptation.

We conduct the domain adaption experiments in a cross-validation manner:
for each center, 80% data is used to train a source-domain model, which is then
evaluated on (1) the rest 20% in-domain test splits (ID) or (2) the entirety
(100%) of each out-of-domain target datasets in the same cohort, completely
held-out from the source training split (OOD, denoted as source — target).

3.1 Quantitative Evaluation

We exhaustively compare HASD in eight OOD and five ID setups with the
following four existing methods: (1) Attention Based Multi Instance Learning
(ABMIL). We include a native ABMIL approach trained on the source data



HASD: Hierarchical Adaption for Pathology Slide-Level Domain-Shift 7

and directly applied to the target data. (2) Patch-level Stain Normalization.
Widely used to mitigate domain shift on patch-level. We apply the Reinhard
stain normalization [16], instead of Macenko due to its much higher runtime,
to transform all target patches into the source domain’s color space. (3) Multi
Instance SimpleShot (MI-SimpleShot). Handles domain shifts by constructing
class prototypes from slide features obtained by mean pooling of patch-level
features [2]. (4) Supervised Contrastive Domain Adaptation (SCDA).
Builds upon MI-SimpleShot with supervised contrastive learning on the source
domain to refine class prototypes [I].

Table 1: ID vs. OOD perfor-  Fig.3: OOD Performances on HER2 Grading

mance gap. (red) and Survival Prediction (cyan).
Her2 Grading Task Our Method 0] scDA [ | Her2 Grading Task
] . D 00D MI-SimpleShot ] ABMIL ] Survival Prediction Task
Methods . Grading
Average Average ReinhardNorm [ Average
MI-SimpleShot 81.6 70.8(10.8]) o
SCDA 82.5 72.0(10.5)) TUM - TCGA| g a5 [Vale - TCGA
ABMIL 858 75.8(10.00) =z
ReinhardNorm ~ 85.3  75.3(10.0J) \
Ours 86.1 79.9(6.2]) \ -
TUM — Yale| 80 / I 90| Yale — TUM

| Py _— ““\

Survival Prediction Task I ; \
I s s

D 00D | a e o =/ |\
Methods Average Average 5\ ) s
MI-SimpleShot  64.9 52.9(12.0) ikl AN\ 78 el
SCDA 65.3 54.7(10.61) N
ABMIL 68.1 57.5(10.6]) o —/
ReinhardNorm  68.5 56.3(12.2]) CPTAC — TCGA TCGA — CPTAC
Ours 681 61.4(6.7]) —

Average

Measuring Slide-level Domain Adaption. We report the performance of
all evaluated methods under various OOD setups (see Fig. . In the HER2
Grading task, our method consistently outperforms others except for setup
TGCA — TUM, where stain normalization achieves the best result. Our model
surpasses the next-best method by 6.0% AUC in the most favorable case,
with an average improvement of 4.1% across all setups. For the Survival Pre-
diction task, our method, enhanced by partial DAS to address label prevalence
differences, consistently outperforms all baselines, achieving an average CI im-
provement 3.9% over the next-best method.

ID vs. OOD Gap Robustness Analysis. Evaluating the ID vs. OOD gap
is essential for assessing domain shift robustness. A smaller gap indicates
better generalization. Table [I] summarizes the differences. For HER2 Grading,
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Table 2: Ablation Study for Parameter Selection.

# Prototype Memory  Grading Survial Prediction
DAS k PACR SGIR Usage (GB) Average Average
v 1 0.6 75.4 58.2
7 5 132 762(0.87)  58.6(0.4])
7 10 529  76.1(0.1]) _ 59.1(0.5])
v 10 v 52.9 79.6(3.57) 58.6(0.5))
v 10 v v 53.0 79.9(0.31) 60.1(1.57)
Partial DAS 10 v v 53.0 - 61.4(1.31)

MI-SimpleShot suffers the largest drop (10.8% AUC), while our method main-
tains the smallest gap (6.2% AUC) with the highest OOD score, demonstrating
strong generalization. In Survival Prediction, domain shift is further influenced
by label prevalence differences. All other methods drops > 10% CI, while
our method, aided by partial DAS, achieves the best OOD performance with
a smaller gap (6.7% CI), proving its effectiveness.

3.2 Ablation study

We summarize the impact of hierarchical components, including DAS, PACR,
and SGIR, and the number of prototypes on both slide-level tasks in Table
Due to GPU memory constraints, the prototype number is limited to 10.

3.3 Quantitative Evaluation of Image & Label Variance Alignment

We illustrate how our method addresses image variances and alleviates label
prevalence variance in t-SNE plots (Fig. 4)) visualizing the aggregated slide-
level features in the Survival Prediction task before and after adaptation.

(a) KM-curve of TCGA-and  (b) Feature Embeddings (c) Align domains (d) Align domains

CPTAC-UCEC Corhorts before Adaption with DAS solver with Partial-DAS solver
LON TCGA-UCEC X TCGA 20 o x  TCGA LN % TCGA
N n . CPTAC-UCEC 5:‘; s © CPTAC .00 7‘*9% & o CPTAC £ o CPTAC
208 ' 8 -’
goa . 3 Long-survival- |q ¥ /’N\ ® e - ,/;;.\
& ' time samples |Z : %\ . et iﬁ% M #% C % %
v NG T o LAY ey T U
202 & / & RN - ,
| v | A i 2
0.0 % e ke :

"
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Fig.4: T-SNE for the Survival task. (a) The TCGA data contain more long-
surviving patients than CPTAC. (b) A clear domain shift exists between centers.
(¢) Balanced SB solver misaligns long-surviving TCGA samples with CPTAC,
leading to poor adaptation. (d) Partial SB solver allows unmatched long-survival
samples to remain unaligned, preserving clinical label relevance.
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4 Conclusion

Domain shift is a critical problem for pathology Al as pathology data is heavily
influenced by center-specific conditions. Current pathology domain adaptation
methods focus on image patches rather than WSI, thus failing to capture global
WHSI features required in typical clinical scenarios. We, for the first time, intro-
duced a slide-level domain adaption method HASD, which incorporates a hierar-
chical adaptation design to maintain multi-scale feature consistency and a pro-
totype selection mechanism to achieve computationally efficiency. Our method
outperformed conventional DA methods in two tasks (Her2 grading and Sur-
vival) by 4.1% and 3.9%, when models were trained and tested in different cen-
ters, while preserving in-domain performance. We believe that our research on
slide-level domain adaptation will improve the generalizability of future clinical
AT models.
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