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Abstract. Sleep stage prediction is a critical task in medical diagnos-
tics, such as for sleep disorders like Obstructive Sleep Apnea-Hypopnea
Syndrome (OSAHS). Traditionally, this task involves analyzing Elec-
troencephalogram (EEG) signals and classifying the stages based on gen-
eral features, often relying on medical expertise. However, this process
is prone to bias and variance, as clinicians incorporate subjective expe-
rience into their predictions. In recent years, multimodal large language
models (MLLMs) have demonstrated significant advancements, partic-
ularly in medical applications, outperforming traditional methods in
many domains. Despite their promising potential, MLLMs are sensitive
to high memorization effects and require high-quality, well-labeled data
for fine-tuning. Label noise, commonly present in real-world datasets,
can severely hinder their performance and robustness. Consequently, di-
rectly applying MLLMs to sleep stage prediction using noisy EEG labels
presents a challenge. In this paper, we introduce a novel framework for
sleep stage prediction using EEG data under label noise, leveraging the
power of MLLMs. Our approach integrates multi-perspective agreement
techniques to identify high-quality samples based on the prior knowl-
edge embedded in MLLMs. We then employ a self-training method to
enhance prediction accuracy despite the presence of label noise. We val-
idate our framework using real patient EEG data in sleep stage pre-
diction tasks, and the results demonstrate that our approach is both
robust and accurate under label noise, outperforming other state-of-the-
art robust learning methods. Our code will be made publicly available
at https://github.com/Leonard-zc/MICCAI2025-RSSP.
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1 Introduction

Sleep staging constitutes the gold-standard methodology for assessing sleep ar-
chitecture in clinical sleep medicine[14, 18]. Conventional practice requires sleep
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specialists to manually classify 30-second polysomnography (PSG) epochs fol-
lowing the American Academy of Sleep Medicine (AASM) criteria[l,22]. As
the principal biosignal for sleep staging[17], single-channel electroencephalogram
(EEG) recordings offer practical advantages by minimizing sleep-state interfer-
ence caused by multi-sensor PSG setups|9, 20]. While deep learning approaches
employing single-channel EEG data have undergone extensive investigation[5],
their clinical translation remains constrained by pervasive label noise in medical
datasets.

Label noise originates from two primary sources: (1) inter-rater variability
inherent in multi-expert annotation protocols[11], and (2) intrinsic feature het-
erogeneity leading to misclassification of phenotypically similar categories, gener-
ating instance-dependent noise patterns|16, 4, 30]. Recent progress in multimodal
large language models (MLLMs) demonstrates significant potential for medical
applications[8, 24, 21], particularly through enhanced multimodal reasoning ca-
pabilities evident in medical diagnosis and imaging analysis tasks[19, 23]. Never-
theless, MLLMs applications in EEG-based sleep staging remain underexplored
despite their success in related medical imaging domains|3, 15].

The operational effectiveness of MLLMs fundamentally depends on precise
cross-modal alignment, yet noise-contaminated datasets can disrupt alignment
mechanisms and degrade inference performance[26,28]. These models exhibit
notable memorization effects, with representation learning capabilities demon-
strating strong label precision dependence[2,12]. When trained on noisy la-
bels, MLLMs frequently manifest hallucinations characterized by semantic mis-
matches between generated interpretations and input signals, severely compro-
mising output reliability[10, 31].

To address this challenge, this paper proposes a strategy combining multi-
perspective agreement with co-optimized self-training. In complex data envi-
ronments, particularly in multimodal medical data, label noise and annotation
inconsistency are often inevitable, which may cause models to learn erroneous
or inconsistent features, leading to hallucinations. We argue that selecting high-
quality samples as reliable learning signals can effectively reduce the negative
impact of label noise on model performance. Specifically, first, high-quality sam-
ples are filtered through multi-perspective agreement. Multi-perspective agree-
ment helps eliminate potential label noise, thereby ensuring training data qual-
ity. Second, a self-training strategy is employed to fine-tune the model based on
high-quality samples and expand the high-quality sample set through model self-
prediction. Subsequently, the multi-perspective agreement technique is reapplied
to filter new high-quality samples, which are added to the training set for sec-
ondary fine-tuning, further enhancing model performance. Experimental results
show that our method effectively reduces hallucinations, particularly in noisy
environments, significantly improving model robustness and generalization ca-
pabilities. This approach provides a new technical pathway for complex data
analysis in the medical field and demonstrates the great potential of MLLMs in
applications such as sleep staging.

‘We summarize our contributions as follows:
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(1) Proposed a novel framework for EEG sleep stage prediction under
label noise: First introduced an innovative framework combining MLLMs
with label noise handling techniques, aiming to improve sleep stage predic-
tion accuracy using EEG data with label noise in real clinical environments.

(2)

Innovative noise-robust learning strategy: Innovatively combined multi-

perspective agreement and self-training strategies, effectively reducing the
impact of hallucinations in multimodal large models under noisy data.

(3)

Comprehensive clinical validation: Demonstrated superior performance

over state-of-the-art methods across benchmark datasets and real-world clin-
ical cohorts.

2 Method

We propose a novel framework combining Multiple-perspective agreement tech-
nology and Self-training strategy, aiming to address the application problem of
single-channel EEG data with label noise in sleep stage prediction. The core
concept of this method is to dynamically construct high-quality training sets
based on a consensus sample selection mechanism in noisy data, while further
enhancing model robustness and generalization capabilities through iterative
self-training strategies. The workflow of the entire framework is shown in Fig 1.
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Fig. 1. Sleep stage classification framework using MLLM based on EEG Image repre-
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2.1 Multi-perspective Agreement for High-quality Sample Selection

Problem Formulation and Input Data. Consider the original dataset D =
{(z4,v:)},, where z; denotes the EEG image and y; € {Wake, N1, N2, N3, REM}
is the associated label. We employ a multi-perspective agreement technique to
assess each sample from various perspectives, determining its qualification as a
high-quality sample. For each EEG image z;, we formulate two prompts for a
question-answering task:

Question 1 (Q1): Directly assess whether x; corresponds to the current
label y;: The model outputs ¢; 1 € {Yes, No}.

Question 2 (Q2): Identify the most probable label for the current EEG im-
age from all sleep stages:The model outputs §; o € {Wake, N1, N2, N3, REM}.

Consistency Judgment Rules. Leveraging the MLLM for each sample
(x4,y;), we evaluate the following consistency condition:

{17 if g1 = Yes and ;2 = y;,
c; = o ’ (1)
0, otherwise.
The consistency evaluation logic is: if the model’s responses to both prompts
are correct, the sample is regarded as consistent (¢; = 1), indicating high relia-
bility of its label y;; otherwise (¢; = 0), the sample is considered potentially noisy.
Training Set Generation - Construction of Positive and Negative Cases.
For the consistent sample set D4 = {(z,v;) | ¢; = 1}, we construct training data
based on the following rules:

1) Positive Case: For each EEG image x;,paired with its correct label y; a
positive training sample is constructed:

7;05 = {(‘T“ 7Yesj) ‘ (.%‘“yz) € DA}7 (2>

2) Negative Case: Randomly choose an incorrect label y; # y; from the
remaining labels to construct negative training samples:

Taeg = (x4, ’N") | (x4,:) € Da,y; # yi}, (3)

In the generation of negative cases, the following constraints are introduced
to ensure data balance and diversity:

3) Balance between Positive and Negative Cases: To maintain the
balance of the training set, the number of positive and negative cases for each
sample x; is equal:

e (1) = o (), (4)

where npeg(z;) and npos(z;)denote the number of negative and positive cases for
sample x; respectively.

4) Uniform Distribution of Wrong Labels: All wrong labels y; € Vyeg
are selected uniformly, i.e., for each y;:

oo (5,47) = ”|y<x|) (5)
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where |Vheg| represents the size of the wrong label set Vpeg ( in this paper, the
size of the wrong label set should be 4 ).nyeqg(x;,y;) represents the number of
negative cases with the wrong label y; for sample ;.

The final training dataset comprises positive and negative cases:

TA = 7;)os U 7;1<3g~ (6)

This approach ensures that the training dataset includes high-quality positive
cases while effectively utilizing negative cases to enhance the model’s discrimi-
native capability.

2.2 Self-training and Preliminary Model Fine-tuning

Preliminary Model Fine-tuning. The MLLM fyum is initially fine-tuned
using the filtered training dataset 74, resulting in the first-round updated model
f1£/[11)JLM The objective of this phase is to allow the model to learn robust classifi-
cation boundaries from the initial high-quality samples and mitigate the impact
of label noise. The loss function for the fine-tuning process is defined as:

1
La=—= Y logP(y|z furm), M
Tl
(z,y)ETA

where P(y | z; fuLLMm) is the predicted probability of the model for the sample
(2,9).
Data Update and Consistency Screening. The original dataset D is re-
screened for consistency using the preliminarily fine-tuned model fIS/RLM, pro-
ducing the second-round high-quality sample set Dp.

The first-stage filtered sample set D4 and the new sample set Dy are com-
bined and deduplicated to create the updated high-quality sample set:

Do =Dy UDp. (8)

Training Set Update. For the updated sample set D¢, the updated training
set T¢ is built following the previously established training set generation rules.

2.3 Multi-round Optimization to Enhance Model Performance

Second-round Fine-tuning. The second round of fine-tuning is conducted on
the updated training set 7¢, where the model fIE/RLM is fine-tuned to yield the fi-

nal model fl%)JLM. Through multiple rounds of optimization, the model gradually
learns more robust classification boundaries, enhancing its generalization ability
across different datasets.The loss function for the second-round fine-tuning is

defined as: 1
Lo=——7 Z IOgP(y|$§f1$4111LM)v )

7ol (a7
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Multi-round Optimization and Model Convergence. The process of data
screening and model fine-tuning is repeated, progressively expanding the training
set and optimizing model parameters until one of the following convergence
criteria is satisfied:
1)The number of high-quality samples in the dataset ceases to increase sig-
nificantly:
[Dit1| = [Di| <, (10)

2)The model’s performance on the validation set stabilizes:

Accuracy,, | — Accuracy;, < 4, (11)

The final model fl&/f}iLM serves as the ultimate prediction model for the sleep
staging task on the actual test set.

Table 1. Performance Comparison of Different Methods on Sleep-EDF and P-EDF
Datasets.

Method Dataset |Manual EEG Channels|Test Epochs AO ggr;;l:)
GCE|29] Sleep-EDF| R&K Fpz-Cz 1000 82.5
L1-loss[25] Sleep-EDF| R&K Fpz-Cz 1000 82.4
co-teaching+[27]|Sleep-EDF| R&K Fpz-Cz 1000 82.8
ours Sleep-EDF| R&K Fpz-Cz 1000 85.2
GCE[29] P-EDF | AASM C4-M1 500 80.8
L1-loss[25] P-EDF | AASM C4-M1 500 80.0
co-teaching+[27]| P-EDF | AASM C4-M1 500 77.6
ours P-EDF | AASM C4-M1 500 82.6

3 Experiments and Results

3.1 Datasets and Baselines

Datasets. This study employs the public Sleep-EDF [13] dataset and a propri-
etary clinical dataset, P-EDF, collected from the Eye & ENT Hospital of Fudan
University, for validation. The Sleep-EDF dataset comprises PSG recordings an-
notated following Rechtschaffen and Kales (R&K) standards, segmented into
30-second epochs. Our analysis specifically employs Fpz-Cz lead signals sampled
at 100 Hz. The P-EDF dataset consists of de-identified PSG recordings from
patients with mild OSAHS. These recordings, staged according to AASM guide-
lines, were analyzed using C4-M1 lead signals acquired at a 200 Hz sampling
frequency for comprehensive validation.

To ensure data quality, segments containing motion artifacts or undefined
stages were removed, particularly pruning the initial and final 30-minute peri-
ods susceptible to electrode placement effects;Standardized staging criteria by
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Table 2. Per-class Accuracy (ACC) Comparison of Different Methods on Sleep-EDF
and P-EDF Datasets.

Per-class ACC (%)

Methods Datasets |Overall| Wake N1 N2 N3 REM

Yes|No |Yes| No |Yes| No | Yes|No|Yes| No
GCE[29] Sleep-EDF| 82.5% | 74 | 26 | 85 | 25 | 76 | 24 | 94 | 6 |83.5|16.5
L1-loss|[25] Sleep-EDF| 82.4% |78.521.5| 85 | 25 [76.523.5| 92 | 8 | 80 | 20

co-teaching+[27]|Sleep-EDF| 82.8% [70.5/29.5|81.5/18.5(80.5|19.5(92.5|7.5| 89 | 11

ours Sleep-EDF| 85.2% [73.5|26.5| 84 | 16 | 86 | 14 | 94 | 6 |88.5|11.5
GCEJ[29] P-EDF | 80.8% | 78 |22 |83 |17 | 73|27 |90 [10| 80 | 20
L1-loss[25] P-EDF | 80.0% | 75| 25|80 |20 | 72|28 |88 |12| 85|15
co-teaching+([27]| P-EDF | 77.6% | 77 |23 |81 |19 | 77|23 | 68 |32| 85 | 15
ours P-EDF | 82.6% | 75|25 |84 |16 | 75|25 |93 | 7 |86 | 14

merging N3-N4 stages from R&K standards into AASM-compliant N3 stage[6];
Converted 30-second EEG epochs into waveform plots (2000x300 pixels, PNG
format), with detailed conversion workflow shown in the data preprocessing mod-
ule of Figurel.

Baselines. This investigation benchmarks three state-of-the-art noise-robust
learning approaches: 1) Generalized Cross Entropy (GCE) [29]: Imple-
ments confidence-aware loss weighting with exponential decay to progressively
filter noisy samples by attenuating gradient contributions from low-confidence
predictions. 2) Lq-loss [25]: Employs Manhattan distance to quantify absolute
differences between predicted and annotated probability distributions, demon-
strating inherent robustness to label outliers. 3) Co-teaching+ [27]: Utilizes
dual-network architecture with cross-parameter updates and dynamic sample
exchange to preserve model diversity while counteracting memorization bias.

3.2 Experimental Setup and Results

Experimental Details. We conducted experiments using LLaMA-3.2-11B Vision-
Instruct|7] as the base model. Parameter-efficient fine-tuning was achieved through
Low-Rank Adaptation (LoRA) methodology[32].The optimization protocol ini-
tialized with learning rate le-6, implementing DeepSpeed ZeRO-3 optimization
strategy across dual NVIDIA RTX 4090 GPUs to accomplish three training
epochs. Model efficacy was quantified using accuracy as primary evaluation cri-
terion, where task-specific performance on Questionl (Q1 accuracy) served as
definitive performance metric.

Experimental Results. As shown in Tables 1 and 2, our method achieves
overall accuracies of 85.2% and 82.6% on Sleep-EDF and P-EDF datasets re-
spectively, significantly outperforming baseline models.Granular analysis reveals
optimal performance in N3 and REM stage classification, with notable improve-
ments in the easily confused N1 stage compared to contrastive methods, vali-
dating the effectiveness of its noise-resistant design.Experimental results demon-
strate that this method combines robustness and high accuracy across datasets,
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multiple annotation standards, and complex sleep stage classification tasks, pro-
viding a reliable solution for sleep staging in noisy environments.

3.3 Ablation Analysis

We perform ablation studies on three key components: multi-perspective agree-
ment filtering for noise reduction, positive-negative sample balancing for feature
optimization, and self-training iteration for performance improvement. The re-
sults highlight each component’s unique contribution to system robustness.

90.0% @ 100% (b) 90.0% ©

B Yes . Yes . Yes
= No 90% == No = No

85.0% 85.0%

%)

X 80.0% 80.0%

75.0% 75.0%

Accuracy (

70.0% 70.0%

65.0% Full-set Q-subset 20% a=0 a=1 a=4 65.0% k=0 k=1 k=2 k=3

Fig. 2. Ablation Analysis of Multi-perspective Agreement Filtering, Sample Balancing,
and Self-Training in Sleep Stage Classification.

1) Multi-perspective Agreement Filtering Framework: As demonstrated
in Figure 2(a), the agreement-filtered high-quality subset (Q-subset) achieves a
5.9% accuracy improvement over the original dataset (0.793 vs. 0.852), effec-
tively mitigating label noise propagation through selective sample purification.
2) Positive-Negative Sample Balancing: Figure 2(b) illustrates the impact
of the class-balancing coefficient o on model performance during training. The
model achieves the highest accuracy of 85.2% when « = 1, indicating a balanced
1:1 class ratio. However, when « is set to 0 or 4, an imbalance in the positive
and negative samples occurs, leading to feature confusion and a negative impact
on model performance. This emphasizes the significance of maintaining balanced
sample representation in model training. 3) Self-training Optimization: The
convergence analysis in Figure 2(c) reveals peak accuracy (0.852) at two training
iterations (k = 2); the third round results in a decline, representing 1.7% and
3.6% improvements over single iteration (k = 1) and baseline (k = 0), respec-
tively.

4 Conclusion

We present a novel noise-robust sleep staging framework leveraging MLLMs,
which systematically resolves label noise challenges in EEG analysis through
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synergistic integration of cross-modal feature alignment and adaptive curricu-
lum learning paradigms. Capitalizing on MLLMs’ embedding space priors, the
framework employs multi-perspective agreement learning for sample purification,
coupled with iterative curriculum optimization to progressively refine model pa-
rameters through dynamic learning schedules. Comprehensive experimental eval-
uations reveal substantial superiority of our framework over conventional noise-
robust methodologies across multiple evaluation metrics. The findings not only
validate MLLMs’ capability in decoding complex biosignals, but also establish
a transferable noise-resilient framework that advances analytical methodologies
for clinical time-series data processing.
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