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Abstract. Accurate fetal birth weight (FBW) estimation is essential for
optimizing delivery decisions and reducing perinatal mortality. However,
clinical methods for FBW estimation are inefficient, operator-dependent,
and challenging to apply in cases of complex fetal anatomy. Existing deep
learning methods are based on 2D standard ultrasound (US) images or
videos that lack spatial information, limiting their prediction accuracy. In
this study, we propose the first method for directly estimating FBW from
3D fetal US volumes. Our approach integrates a multi-scale feature fu-
sion network (MFFN) and a synthetic sample-based learning framework
(SSLF). The MFFN effectively extracts and fuses multi-scale features
under sparse supervision by incorporating channel attention, spatial at-
tention, and a ranking-based loss function. SSLF generates synthetic
samples by simply combining fetal head and abdomen data from differ-
ent fetuses, utilizing semi-supervised learning to improve prediction per-
formance. Experimental results demonstrate that our method achieves
superior performance, with a mean absolute error of 166.4± 155.9 g and
a mean absolute percentage error of 5.1 ± 4.6%, outperforming exist-
ing methods and approaching the accuracy of a senior doctor. Code is
available at: https://github.com/Qioy-i/EFW.
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1 Introduction

Accurate estimation of fetal birth weight (FBW) prior to delivery is crucial for
making optimal delivery decisions (i.e., vaginal birth or cesarean section) and re-
ducing perinatal mortality [14]. As shown in Fig. 1, the standard clinical method
for FBW assessment involves a cumbersome procedure: obtaining 2D standard
ultrasound (US) planes, measuring biometric parameters, and applying an em-
pirical formula to estimate it [6]. However, each steps poses significant challenges.
First, acquiring standard US planes requires radiologists to deeply understand
fetal anatomy and accurately locate the 2D plane in 3D space, which is techni-
cally demanding and time-consuming [4]. Second, both standard plane acquisi-
tion and biometric measurements depend heavily on the radiologist’s experience,
leading to intra- and inter-observer variability, which affects the accuracy and
reproducibility [10]. Finally, the empirical formulas currently in use are based on
regression analysis of a limited set of biometric parameters, failing to account
for diverse and complex anatomical variations among different fetuses [12].

Fig. 1. Workflow for conventional 2D US-based and our 3D US-based FBW estimation.

To address these clinical challenges, several artificial intelligence-based ap-
proaches have been proposed, broadly categorized into three types: (1) Some
studies use manually measured parameters and maternal information, applying
machine learning methods to predict FBW [3,11,21]. (2) Other studies leverage
deep learning to predict parameters from standard US planes or videos, followed
by applying empirical formulas to estimate FBW [1, 17, 18]. (3) A few studies
employ deep learning models to directly predict FBW from standard US videos
combined with clinical information [15,16,19]. However, to date, no approaches
have been developed to comprehensively address all three key challenges. Fur-
thermore, due to the lack of spatial information in 2D US imaging, methods
based on it struggle to accurately capture fetal anatomical structures, limiting
prediction accuracy. In contrast, as shown in Fig. 1, 3D fetal US imaging provides
more comprehensive anatomical information and reduces reliance on the opera-
tor’s technique, making it a promising alternative for estimating FBW [7,9,13].
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However, its relatively lower resolution and higher noise levels pose challenges for
manual biometric measurements and empirical formula-based estimation. More-
over, while 3D US has not yet achieved widespread clinical adoption due to
factors like cost and accessibility, it is increasingly available in advanced obstet-
ric settings. This trend highlights the growing need for automated methods that
can fully leverage 3D US data and bypass the limitations of handcrafted features
and empirical modeling.

In this study, we propose the first method for directly estimating FBW from
3D fetal US volumes. The key challenges lie in extracting informative features
from large, anatomically complex 3D data under sparse supervision, and address-
ing data scarcity given the wide prediction space. To tackle these, we introduce
a multi-scale feature fusion network (MFFN) that integrates head and abdomen
volumes using channel attention and Mamba-based spatial attention. We further
design a ranking-based loss based on inter-fetal FBW relationships to improve
generalization. To alleviate limited sample size, we propose a synthetic sample-
based learning framework (SSLF), which generates new fetal samples by mix-
ing head and abdomen volumes from different fetuses and learns from them via
semi-supervised training. The experimental results demonstrate that our method
achieves superior performance, exceeding existing methods and approaching the
accuracy of a senior doctor.

2 Methodlogy

As illustrated in Fig. 2, our approach consists of a multi-scale feature fusion
network (MFFN) and a synthetic sample-based learning framework (SSLF). In
MFFN, we integrate channel attention and spatial attention to extract and fuse
multi-scale features. Additionally, we design a ranking-based loss function to
model the FBW relationships between fetuses. In SSLF, we design a simple yet
effective sample synthesis method to expand the dataset and then apply semi-
supervised learning to enhance FBW estimation.

2.1 Multi-scale Feature Fusion Network

Due to the significant variations in the spatial scales of fetal anatomical struc-
tures, features extracted from a single scale are inadequate for accurate FBW
prediction. Thus, we design a multi-scale feature fusion network (Fig.2(a)).

Problem definition: Let
{(

xh
i , x

a
i , s

h
i , s

a
i , gi, yi

)
|i ∈ 1, 2, ...N

}
denote a mini-

batch randomly sampled from the 3D fetal US dataset. Here, xh
i , x

a
i ∈ R1×D×H×W

represent the 3D US volumes of the fetal head and abdomen, where D, H, and
W are the depth, height, and width of the volumes, respectively. shi , sai ∈ R3 are
the voxel spacing in the depth, height, and width directions for the head and
abdomen. gi ∈ {0, 1, 2, 3} is the time interval (in days) from the 3D US scan
to delivery. yi ∈ [0, 1] denotes the normalized true FBW, and N is the batch
size. During clinical inference, gi is provided by the doctor as the time interval
from the 3D US scan to the estimated delivery. To incorporate spacing and time
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Fig. 2. Overview of the proposed FBW estimation method.

interval information, we expand the dimensions of shi and gi and concatenate
them along the channel dimension with xh

i , resulting in a five-channel head vol-
ume Xh

i ∈ R5×D×H×W . Similarly, we obtain abdominal volume data Xa
i . The

objective of this study is to predict FBW yi given the input volumes (Xh
i , X

a
i ).

Feature Fusion: We designed a shared network for both head and abdomen
data, so their forward computation processes are identical. For simplicity, we de-
scribe the computation process using head data as an example. 3DResNet18 [23]
is adopted as the backbone for feature extraction. The features from four in-
termediate layers, denoted as Zh1

i , Zh2

i , Zh3

i , Zh4

i , are extracted. These features
are spatially downsampled by factors of 4, 8, 16, and 32, with corresponding
channel dimensions of 64, 128, 256, and 512. To enable multi-scale feature fusion
at a uniform spatial resolution, we first apply 1× 1× 1 convolutions to project
all feature maps to a consistent channel dimension of 128. Then, four sets of
convolutions are applied to downsample the features to the same spatial resolu-
tion, with kernel sizes and strides set to 8, 4, 2, and 1, respectively. This process
aligns features across all four scales both spatially and channel-wise. Finally,
we concatenate the features along the channel dimension, resulting in the fused
representation Zh

i ∈ R512× D
32×

H
32×

W
32 .

Channel Attention: High-level features typically capture global semantics
but with lower resolution, while low-level features focus on fine-grained details
at higher resolution. Given their different roles, it is necessary to weigh them
appropriately. To achieve this, we apply channel attention to the fused features
Zh
i . We use a bottleneck MLP with the same input and output dimensions, where

the activation function is ReLU and the dimensionality reduction factor is set
to 16, denoted as MLP (·). The channel attention mechanism is formulated as:

Zh
i = Zh

i · σ(MLP (GAP (Zh
i ))), (1)
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where σ(·) denotes the sigmoid activation function and GAP (·) represents global
average pooling over the spatial dimensions. This attention mechanism assigns
independent weights to channels at different scales, improving FBW prediction.

Spatial Attention: Since not all regions in the volume correspond to fetal
anatomy, and different structures contribute differently to FBW prediction, it
is essential for the model to focus on relevant fetal regions. Inspired by the
Mamba architecture [5], we design a spatial attention mechanism that employs
six Mamba models, each corresponding to a unique scanning orientation: (1) left-
to-right, (2) right-to-left, (3) top-to-bottom, (4) bottom-to-top, (5) front-to-back,
and (6) back-to-front. Specifically, six spatial sequences Zh1

i , Zh2
i , Zh3

i , Zh4
i , Zh5

i ,

Zh6
i ∈ R512×L are generated by applying different flattening methods to the

input features, where L = D
32 × H

32 × W
32 . The sequences are processed by their

corresponding Mamba models, and their outputs are fused using an averaging
operation, yielding the final feature map Zh

i ∈ R512×L. This fusion captures
spatial information from multiple perspectives, improving FBW prediction.

Loss Function: After the above three steps, we obtain the head and ab-
domen features Zh

i and Za
i . These features are concatenated along the channel

dimension and subjected to global average pooling over the spatial dimensions,
resulting in the fused head-abdomen representation Zha

i,i ∈ R1024. A single fully
connected layer followed by a sigmoid activation function is applied to predict
the FBW pi. The regression loss is defined as:

Lossreg =
1

N

N∑
i=1

MSE(pi, yi), (2)

where MSE(·) denotes the mean squared error between the predicted FBW pi
and the ground truth yi. To further enhance the model’s ability to capture rela-
tive weight differences among fetuses, we introduce a ranking-based loss function.
This loss encourages the predicted order of FBWs to align with the ground truth
order. The ranking loss is formulated as:

Lossrank =
1

N2

N∑
i=1

N∑
j=1

max[0,−(pi − pj)] · τ(yi − yj), (3)

where τ(·) equal to 1 if the argument is greater than 0 and 0 otherwise.

2.2 Synthetic Sample-based Learning Framework

In this study, a key challenge we face is the conflict between limited sample size
and nearly infinite possible predictions, making conventional supervised learning
models prone to severe overfitting. To address this issue, we propose an synthetic
sample-based learning framework, as shown in Fig. 2(b).

Sample synthesis: Here, the sample refers to the fetus rather than the head
or abdominal volume. We hypothesize that the model predicts FBW by estimat-
ing fetal size from both head and abdominal volumes. Due to the anatomical
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independence between head and abdominal regions, there is little or no direct cor-
relation between their volumes within the same fetus. Based on this observation,
we propose a simple method to synthesize new samples from different fetuses.
Specifically, we create synthetic samples by combining the head volume of one fe-
tus with the abdominal volume of another. Let

{(
Xh

i , X
a
j

)
|i, j ∈ 1, 2, ...N, i ̸= j

}
denote the set of synthetic samples within a mini-batch, where N is the batch
size. For each mini-batch, this method can generate N(N−1) synthetic samples,
greatly expanding the dataset without any complicated operations.

Semi-supervised learning: Although the previous steps synthesize a large
number of new samples to expand the dataset, they lack real FBW labels. To
address this, we leverage semi-supervised learning by treating synthetic samples
as unlabeled data. Inspired by the MeanTeacher framework [22], we design a
semi-supervised learning setup consisting of two models: the teacher model and
the student model, both of which share the same architecture (i.e., MFFN). Dur-
ing training, the student model’s parameters are updated via backpropagation,
while the teacher model’s parameters are updated using an exponential moving
average (EMA) of the student model’s parameters, as follows:

θtT = mθt−1
T + (1−m)θtS , (4)

where θT and θS denote the parameters of the teacher and student models,
respectively. t denotes the iteration step, and m is the momentum coefficient
that controls the update rate of the teacher model.

In each training batch, there are N head and N abdomen data samples, re-
sulting in N2 possible combinations. Of these, N combinations correspond to
real fetal samples (with labels), while the remaining N(N−1) combinations cor-
respond to synthetic fetal samples (without labels). For these combinations, let{
pTij |i, j ∈ 1, 2, ..., N

}
and

{
pSij |i, j ∈ 1, 2, ..., N

}
represent the predictions from

the teacher and student models, respectively. We treat the teacher Model’s pre-
dictions as pseudo-labels to supervise the student Model. The loss function for
the semi-supervised learning phase is defined as:

Losssemi =
1

N(N − 1)

N∑
i=1

N∑
j=1

MSE(pSij , p
T
ij), i ̸= j. (5)

Finally, the total loss function is the weighted sum of three components:

Losstotal = Lossreg + αLossrank + βLosssemi, (6)

where α and β are the loss weighting coefficients. With this approach, our model
can effectively learn from synthetic samples generated by combining fetal head
data with abdomen data from different fetuses.

3 Experiments and Results

3.1 Datasets and Implementations

With ethics committee approval, we collected a dataset of 491 pregnancies by
two senior doctors, each with 17 years of experience. Each case includes one
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head, abdomen, and femur ultrasound scan acquired within 72 hours before
delivery, using a GE HealthCare E8 system with an RAB6-D probe. Prior to
delivery, a senior doctor estimated fetal birth weight (FBW) using the Hadlock
formula based on manual biometric measurements. Post-delivery, the true FBW
was recorded as ground truth. The mean true FBW was 3229.3±467.8 g, ranging
from 1000 g to 4610 g. Voxel spacing was extracted from metadata. The dataset
was randomly split into training, validation, and test sets at a 7:1:2 ratio, and
all volumes were resized to 160× 128× 96 while preserving aspect ratio.

We trained the model for 200 epochs with a batch size of 16 using the Adam
optimizer. The learning rate started at 1e−4, warmed up for 5 epochs, and then
decayed via cosine annealing. Data augmentation included rotation, flipping,
scaling, and contrast and brightness adjustments to improve generalizability.
Hyperparameters were set as follows: α = 0.001, β increased linearly from 0 to
0.2, and momentum m from 0.99 to 0.9999. These values were selected via grid
search on the validation set. All experiments ran on an RTX 4090 GPU server.

3.2 Results

To evaluate our method, we compared it with several existing approaches, in-
cluding Hadlock [6], INTERGROWTH-21st [20], BabyNet [16], BabyNet++ [15],
3DCNN-1 [24], 3DCNN-2 [2], and DSCNN [8]. Hadlock and INTERGROWTH-
21st are widely used clinical methods based on manual biometric measurements
and empirical formulas; we used the pre-delivery estimate by a senior doctor as
the Hadlock reference. BabyNet and BabyNet++ predict FBW from 2D ultra-
sound videos, with the latter also incorporating biometric and maternal data;
we adopted the reported results from their original studies. 3DCNN-1, 3DCNN-
2, and DSCNN are recent 3D regression models for other tasks, which we re-
implemented following their published protocols. All methods were evaluated
using mean absolute error (MAE), root mean square error (RMSE), and mean
absolute percentage error (MAPE).

Table 1 summarizes the comparison results. Our method achieves strong per-
formance, with a MAE of 166.4±154.9 g, RMSE of 227.3±227.3 g, and MAPE of
5.1± 4.6%. Notably, it is highly competitive with Hadlock—widely used in clin-
ical practice—and INTERGROWTH-21st, a global fetal growth standard. The
closest method, BabyNet++, leverages standard US videos, manual biometric
measurements, and maternal information. In contrast, our approach relies solely
on 3D US volumes, requiring minimal scanning expertise and no manual input.
We also evaluated the two key components of our method. MFFN alone achieved
a MAE of 172.0± 164.6 g, RMSE of 238.1± 237.1 g, and MAPE of 5.3± 4.9%,
demonstrating its ability to extract features effectively from 3D volumes under
sparse supervision. When combined with SSLF, multiple 3D regression mod-
els showed improved performance, indicating its adaptability and potential for
broader application.

To evaluate the effectiveness of each component in our method, we conducted
a series of ablation experiments. Specifically, we assessed the impact of single-site
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Table 1. Comparison results of different methods.

Method MAE(g)↓ RMSE(g)↓ MAPE(%)↓
Hadlock [6] 160.2 ± 118.5 199.3 ± 197.9 5.0 ± 3.7
INTERGROWTH-21st [20] 182.9 ± 137.0 228.5 ± 220.9 5.7 ± 4.2
BabyNet [16]* 254.0 ± 230.0 341.0 ± 215.0 7.5 ± 6.6
BabyNet++ [15]* 179.0 ± 19.0 203.0 5.1 ± 0.6
3DCNN-1 [24] 268.7 ± 245.2 363.8 ± 358.7 8.2 ± 7.1
3DCNN-2 [2] 253.1 ± 222.1 336.8 ± 336.2 7.9 ± 6.9
DSCNN [8] 264.7 ± 239.1 356.7 ± 355.0 8.3 ± 7.8
MFFN(Ours) 172.0 ± 164.6 238.1 ± 237.1 5.3 ± 4.9
3DCNN-1 + SSLF 264.7 ± 227.8 349.3 ± 348.9 8.2 ± 7.1
3DCNN-2 + SSLF 248.3 ± 212.2 326.6 ± 325.1 8.1 ± 6.7
DSCNN + SSLF 220.0 ± 218.3 310.0 ± 309.1 6.8 ± 6.5
MFFN + SSLF(Ours) 166.4 ± 154.9 227.3 ± 227.3 5.1 ± 4.6

*Results reported from original publication; model not retrained on our dataset due to
input modality mismatch.

Table 2. Experimental results of ablation study with different configurations of key
components of our model. 3DR18: 3DResNet18, WS: Weight-sharing, FF: Feature-
fusion, CA: Channel attention, SA: Spatial attention, RL: Ranking-based loss

Model Architecture Input Results
3DR18 WS FF CA SA RL SSLF Head Abdomen MAE(g) MAPE(%)

✓ ✓ 283.1 ± 229.0 9.0 ± 7.5
✓ ✓ 252.8 ± 191.8 8.0 ± 6.4
✓ ✓ ✓ 222.4 ± 193.2 6.7 ± 5.1
✓ ✓ ✓ ✓ 200.6 ± 178.1 6.1 ± 5.1
✓ ✓ ✓ ✓ ✓ 189.7 ± 173.9 5.9 ± 5.4
✓ ✓ ✓ ✓ ✓ ✓ 191.0 ± 166.1 5.9 ± 5.0
✓ ✓ ✓ ✓ ✓ ✓ ✓ 177.2 ± 175.2 5.9 ± 5.0
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 172.0 ± 164.6 5.3 ± 4.9
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 166.4 ± 154.9 5.1 ± 4.6

and multi-site volumes, weight-sharing in multi-site volume fusion, feature fu-
sion, channel attention, spatial attention, ranking-based loss function, and SSLF.
The results, presented in Table 2, demonstrate that weight-sharing in multi-site
volume fusion is crucial for accurate FBW estimation. Additionally, simple multi-
scale feature fusion enhances accuracy, confirming its necessity. While channel
attention increases the average MAE by 1.3g, it reduces the standard deviation
by 7.8g, making it beneficial overall. Spatial attention further improves perfor-
mance, decreasing the average MAE by 13.8g. The ranking-based loss function
aligns the FBW relationships between fetuses with the groundtruth, effectively
boosting prediction accuracy. Finally, SSLF significantly expands the dataset
and improves performance through a semi-supervised learning framework.
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4 Conclusion

In this study, we present a novel method for predicting FBW directly from
3D fetal US volumes. To address challenges in feature extraction and sample
size limitations, our method designs a multi-scale feature fusion network and
a synthetic sample-based learning framework. Our results outperform existing
methods and close to clinical accuracy. Rather than replacing 2D workflows, our
method offers a complementary tool for enhanced decision-making. Future work
will extend this framework to jointly estimate biometric parameters and FBW,
improving automation and interpretability.
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