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Abstract. Medical image segmentation is crucial for accurate diagno-
sis and effective treatment planning. However, in cross-domain semi-
supervised segmentation, the scarcity of labeled data often leads to sub-
optimal performance and poor generalization across diverse medical imag-
ing domains. Moreover, pseudo-labels generated from unlabeled data are
inherently noisy, introducing confirmation bias that destabilizes training
and hinders the model’s ability to accurately capture complex anatomi-
cal structures. To address these challenges, we propose HARP: Harmo-
nization and Adaptive Refinement of Pseudo-Labels for Cross-Domain
Medical Image Segmentation, a framework designed to enhance seg-
mentation performance by integrating two novel modules: the Adaptive
Pseudo-label Selection (APS) module and the Cross-Domain Harmoniza-
tion (CDH) module. The APS module ensures the quality and reliability
of pseudo-labels by using a confidence-based filtering mechanism and an
iterative refinement strategy. The CDH module uses matrix decompo-
sition to harmonize differences across medical imaging modalities, en-
hancing data diversity while preserving domain-specific features and im-
proving the model’s adaptability to varying imaging protocols for robust
performance across diverse medical datasets. Extensive experiments on
three medical datasets demonstrate the effectiveness of HARP, achieving
significant improvements across multiple evaluation metrics. The source
code is available at https://github.com/1bl1yl/HARP.

Keywords: Semi-supervised learning - Medical image segmentation -
Cross-domain adaptation

1 Introduction

Accurate segmentation of anatomical structures is crucial for clinical applica-
tions, enabling precise diagnosis and treatment planning [23]. However, acquir-
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ing large-scale annotated medical imaging datasets is challenging due to the
need for expert labeling, which is time-consuming and costly [19]. Cross-domain
semi-supervised segmentation (CD-SSS) has emerged as a promising solution,
leveraging a small amount of labeled data alongside a larger pool of unlabeled
data across multiple imaging domains [10,13]. Yet, it faces two major challenges:
(1) domain shifts [27] caused by variations in imaging modalities, acquisition
protocols, and patient demographics, and (2) noisy supervision signals from un-
labeled data [28], which introduce confirmation bias and destabilize training.

Recent efforts in semi-supervised and cross-domain medical image segmen-
tation have made progress in addressing these issues. For example, EPL [20]
improves pseudo-label quality through Fourier transformations, while MiDSS
[16] mitigates domain shifts by constructing intermediate domains. ABD [¢] en-
hances consistency learning via bidirectional patch displacement, and AstMatch
[30] uses adversarial self-training to improve cross-domain consistency. Generic
[21] focuses on distribution-invariant features using an Aggregating & Decou-
pling framework. Despite these advancements, existing methods often struggle
with the complexity and variability of medical data, leading to models that may
overfit or fail to generalize in real-world clinical settings.

To tackle these challenges, we propose HARP: Pseudo-Labeling with Adap-
tive Selection and Harmonization for Cross-Domain Medical Image Segmenta-
tion. HARP introduces two key components: an Adaptive Pseudo-label Selec-
tion (APS) module and a Cross-Domain Harmonization (CDH) module. The
APS module improves pseudo-label reliability by filtering low-confidence pre-
dictions and refining labels iteratively, ensuring stable and accurate supervision.
The CDH module addresses domain gaps by aligning feature distributions across
domains using Singular Value Decomposition (SVD), while preserving modality-
specific characteristics. By synthesizing hybrid images that blend features from
different domains, the CDH module enhances the model’s robustness to domain
variability.

HARP effectively combines pseudo-label refinement and domain harmoniza-
tion to address the dual challenges of limited labeled data and domain shifts.
The APS module ensures high-quality pseudo-labels, reducing noise and confir-
mation bias [9,15], while the CDH module enriches the training set with hybrid
images, improving generalization [25,20]. Extensive experiments on three medical
datasets demonstrate HARP’s effectiveness, achieving significant improvements
[12,6,1] in segmentation accuracy, showcasing HARP’s potential as a reliable and
generalizable solution for cross-domain medical image segmentation in clinical
practice.

2 Method

Problem Setting. Cross-Domain Semi-Supervised Segmentation (CD-SSS) seeks
to perform accurate segmentation across N medical imaging domains {D;}Y ;
with limited labeled data {(x;,;)}/, and a larger unlabeled set {u;}}, (M >
K). Each image has resolution H x W x D and multi-class labels y; € {0, 1}7XWx¢
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Fig.1. Overview of the proposed HARP framework. The HARP framework
processes labeled and unlabeled data from multiple domains to improve segmentation
performance. The local model is trained sequentially on data from one domain at a
time, while the global model is periodically updated and used to reinitialize the local
model. The APS module refines pseudo-labels generated from unlabeled data, while
the CDH module performs data mixup to create augmented samples.

where C' is the number of classes. The task is to leverage limited labeled data
{(z4,v:)}X, and abundant unlabeled data {u;}, (M > K) from N domains
{D;}X, to achieve accurate segmentation across diverse medical imaging do-
mains.

2.1 Overall Pipeline

The HARP framework trains segmentation models across N domains iteratively.
Initially, a local model is trained on each domain using domain-specific data.
These local models are then aggregated into a global model, which is trained on
data from all domains. The global model’s parameters are shared back to the
local models for further refinement, and this process repeats until global training
is complete. Finally, the global model is fine-tuned on domain-specific data to
produce N specialized local models.

The Adaptive Pseudo-label Selection (APS) module improves pseudo-labels
through confidence filtering and iterative refinement, while the Cross-Domain
Harmonization (CDH) module reduces domain gaps by aligning features using
Singular Value Decomposition (SVD). As illustrated in Fig. 1, the global model
is further trained using labeled data, refined pseudo-labels, and harmonized data,
resulting in a robust final model.
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Fig. 2. Visual results from the Fundus dataset. (a) Labeled training data. (b) Unlabeled
data. (c) Data processed by the CDH module, showing increased diversity and inherited
masks.

2.2 Adaptive Pseudo-label Selection Module

The Adaptive Pseudo-label Selection Module selects high-quality pseudo-labels
by combining predictions from a global model f, and N fine-tuned local mod-
els fy. For unlabeled data in each domain, f; and f, independently generate
pseudo-labels 7, and 4, respectively. These pseudo-labels are then evaluated
for reliability using a confidence score C(§q, @), which integrates two key met-
rics: the Intersection score and a Fréchet-based similarity measure.

The confidence score is defined as:

~ A 2 Ei\i gd,i . gu7i F(gda :g )
Cliadu) = o= v —x (1-—7—)
dim1 Ui + iy Gusi

Intersection score D(§q,i,) Similarity measure S(ga,Ju)

(1)

where 94 ; and ¢, ; are binary values indicating whether the i-th pixel belongs to
a specific class, F (4, 7.) is the Fréchet distance, which measures the similarity
between the two sets of pseudo-labels. It is defined as:

F(ia. ) = inf maxe d (Ga(a(0). 5u(3(2)) @

where « and 8 are continuous, non-decreasing reparameterizations of the pseudo-
labels, and d is the distance metric, L is the image diagonal length, used to
normalize the Fréchet distance.

The Intersection score D(9q4, 4, ) quantifies the overlap between the pseudo-
labels, with higher values indicating greater agreement between the local and
global models. The similarity measure S(§q4, §,,) evaluates their spatial alignment,
ranging from 0 to 1, where higher values denote greater similarity. The confidence
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score C'(§4,9u) (Eq. 1) combines these metrics, providing a robust indicator of
pseudo-label quality.

To categorize the confidence scores, we employ the k-means clustering algo-
rithm, grouping the scores into high, medium, and low confidence:

3

. 2 1
ar, min T — uill”, i = — . 3
g{cl,cz’cg}z Solle—pill*, @l > (3)

i=1 z€C; zeC;

Here, C1, C5, and C'5 represent the clusters for high, medium, and low confidence,
respectively. Tiarge Tepresents the average of C; minimum confidence and Cs
maximum confidence, while Ty, is the average of Cy minimum confidence
and C3 maximum confidence. Pseudo-labels with confidence scores above the
threshold T' = max(Tlarge, 1 — Tsman) are retained as reliable data.

To address class imbalance, the annotation budget for each domain is set to

%, where k denotes different domains with B as the total annotation budget.
The module selects the J]B\}“ pseudo-labels with the lowest confidence scores for

manual annotation, incorporating them into the training set Diyain = { (74, y:)} Y1, 9 €
Y, where y; is the ground-truth label for x;. By prioritizing low-confidence sam-

ples, the module ensures that the most challenging and informative examples

are included in the training process, optimizing the use of limited annotation
resources.

2.3 Cross-Domain Harmonization Module

The Cross-Domain Harmonization Module aims to reduce domain gaps and en-
hance data diversity by aligning features across different domains. Given two
input images, X; € R™*" and X5 € R™*" the images are defined as follows:

Xl c Dlabeled U Dannotated, X2 e Dﬁrst B (4)

train train unlabeled”

Here, B represents the proportion of unlabeled data from the target domain
that is selected for the harmonization process. These images originate from dif-
ferent domains, and the module begins by performing SVD independently:

X1 =U SV, Xo = U5V, (5)

where Uy, Us € R™*™ and Vq, V5 € R™ ™ are orthogonal matrices, and Xy, X5 €
R™*™ are diagonal matrices containing the singular values of X; and Xs, re-
spectively.

The module then proceeds to mix the singular values of the two images using
a mixup operation. To control the interpolation strength, a parameter « is drawn
from a Beta distribution, which controls the interpolation strength. The mixed
singular value matrix Xy, is computed as follows:

Emix = 0421 + (1 - 04)22. (6)
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To reconstruct the augmented image Xy, the module employs the mixed
singular value matrix X\,;; along with the left and right singular vectors of the
source domain image:

Xmix = UlzmixV1T~ (7)

The reconstructed image X« inherits the structural information from the
source domain image while incorporating the semantic content from both do-
mains through the mixed singular values. This process effectively bridges the do-
main gap and enhances the model’s ability to generalize across diverse datasets,
as shown in Fig. 2. Regarding the ground truth labels for the augmented im-
ages, the module directly copies the labels from the source domain image, which
ensures that the label information remains consistent with the original source
domain data, preserving the integrity of the training process.

By operating in the latent space of singular values (Eq. 5), the module cap-
tures the essential characteristics of the images from both domains, enabling ef-
fective domain adaptation. The mixup operation on the singular values (Eq. 6)
allows for a smooth interpolation between domains, generating augmented sam-
ples that bridge the gap between the source and target distributions.

2.4 Optimization

The Cross-Domain Harmonization Module is optimized using a combined loss
function:

Etotal = £CE + EDiC87 (8>

where Lcg measures classification error, and Lpic. evaluates the overlap be-
tween predicted and ground truth segmentation masks. This combined loss en-
sures accurate classification and high-quality segmentation, enabling the model
to generalize effectively across domains.

3 Experiments

3.1 Datasets and Evaluation Metrics

We evaluated our method on three medical imaging datasets: Fundus [22], Prostate
[14], and M&MS [4]. Fundus contains 789 retinal images from 4 centers, Prostate
includes 1,510 MRI slices from 6 sources, and M&MS comprises 3,447 cardiac
CT slices from 4 sources. For training, we used all unlabeled data, 20 labeled
samples (40 samples on Prostate), and an additional 5% labeled budget. Perfor-
mance was evaluated using Dice Score, Jaccard Score (both in %), 95% Hausdorff
Distance (95HD, in voxels), and Average Surface Distance (ASD, in voxels).
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Table 1. Comparisons with SSL and AL methods on fundus, prostate, and M&MS
datasets.

Dataset Type Method DC ¢t JC 1 HD | ASD |

g BCP 83.05  73.66  11.05 5.80
CauSSL 6181  51.80 4125  23.94

RLD 71.89 6359 2451  16.53

Fundus AL FEAL 73.03 63.50 18.97 11.56
SSAL  Ours 88.22 80.26  7.81 3.74

g  BCP 64.81 5517  52.60  27.22

CauSSL 2093 1548  114.62  73.30

RLD 50.15 5086  34.98  15.87

Prostate AL FEAL 7919 70.15  20.83 8.82
SSAL  Ours 81.38 72.81 18.13  8.69

g  BCP 7165 6267 3091  18.22

CauSSL 3544 2673 7290  37.99

RLD 7790 69.19  18.68 8.79

M&MS - AL FEAL 80.85 7253  11.30 5.48
SSAL  Ours 85.10 76.93  6.74 3.03

3.2 Implementation Details

The proposed method is implemented using the PyTorch framework and trained
on an NVIDIA GeForce RTX 3090 GPU. The hyperparameter (3 is set to 10, and
the optimization is performed using the Adam optimizer with an initial learning
rate of 1 x 10~%. Other parameters remain consistent with [16].

3.3 Main Results

Our experiments (Table 1) across three medical imaging datasets—Fundus, Prostate,
and M&MS—demonstrate the versatility and effectiveness of our method. We
compare against four state-of-the-art methods: two Semi-Supervised Learning
(SSL) approaches (BCP [2] and CauSSL [17]) and two Active Learning (AL)
approaches (RLD [18] and FEAL [7]), as shown in Table 1.

On the Fundus dataset, our method achieved a Dice Coefficient (DC) of
88.22 and Jaccard Coefficient (JC) of 80.26, outperforming both SSL and AL
methods. The nearest competitor, BCP, trailed by over 5 percentage points. Our
method also excelled in boundary precision, with a Hausdorff Distance (HD) of
7.81 and Average Surface Distance (ASD) of 3.74. This strong performance is
particularly notable given the challenging dual-object segmentation task and the
limited labeled data (only 20 samples).

For the Prostate dataset, our method again delivered superior results, with a
DC of 81.38 and JC of 72.81. It handled complex prostate boundaries effectively,
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achieving an HD of 18.13 and ASD of 8.69. While SSL methods struggled with
the variability in prostate shapes and intensities, even the better-performing AL
methods fell short of our results.

On the M&MS dataset, which requires precise segmentation of the left ven-
tricle, myocardium, and right ventricle, our method achieved a DC of 85.10 and
JC of 76.93. Boundary precision was particularly strong, with an HD of 6.74 and
ASD of 3.03. Compared to existing approaches, our method consistently achieves
higher accuracy and robustness, making it well-suited for clinical applications
where precision is critical.

Table 2. Ablation study of different components on two datasets

Components ‘ Fundus Dataset ‘ M&MS Dataset
APS CDH‘ DCt JCt HDJ ASDi‘ DCt JCt HDJ| ASD |

L

v 54.53 4244 5211 28.16 | 43.08 33.82 56.53 32.47
v v 76.48 67.09 21.66 12.80 | 70.82 60.67 24.67 11.04
v
v

v 84.73 76.18 14.05 6.52 | 82.24 73.72 8.88 5.11
v v’ | 88.22 80.26 7.81 3.74 |85.10 76.93 6.74 3.03

3.4 Ablation Studies

Table 2 summarizes our ablation study, demonstrating the contribution of each
HARP component on the Fundus and M&MS datasets. We evaluated perfor-
mance using four metrics: Dice Coefficient (DC), Jaccard Index (JC), Hausdorff
Distance (HD), and Average Surface Distance (ASD) [23,19].

In the table, L indicates the use of labeled data during training. On the Fun-
dus dataset, the baseline model achieves a DC of 54.53 and JC of 42.44. Adding
the Adaptive Pseudo-label Selection Module (APS) significantly improves perfor-
mance, with DC rising to 76.48 and JC to 67.09. The full model, which combines
L, APS, and the Cross-Domain Harmonization Module (CDH), achieves the best
results: DC of 88.22 and JC of 80.26, along with notable reductions in HD and
ASD [5,11].

Similar improvements are observed on the M&MS dataset. The baseline
model yields a DC of 43.08 and JC of 33.82. With APS, these values increase to
70.82 and 60.67, respectively. The full model further boosts performance, reach-
ing a DC of 85.10 and JC of 76.93, while also improving HD and ASD [9,15].

Qualitatively, our method outperforms RLD [18] and FEAL [7] in segment-
ing Fundus images, producing results that align more closely with ground truth.
Similar advantages are seen on the Prostate dataset, where our approach cap-
tures prostate regions more accurately [29]. On the M&MS dataset, our method
consistently captures fine anatomical details, demonstrating its robustness across
diverse medical imaging tasks [24,3].
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4 Conclusion

In this study, we introduced the Adaptive Domain Integration Framework (HARP),
a novel approach for cross-domain semi-supervised medical image segmentation.
HARP efficiently utilizes limited labeled data by training both domain-specific
and universal models [9,15]. The Adaptive Pseudo-label Selection Module (APS)
enhances the reliability of pseudo-labels, improving training under minimal su-
pervision, while the Cross-Domain Harmonization Module (CDH) mitigates do-
main shift using Singular Value Decomposition to increase data variability and
reduce disparities [5,11]. Both APS and CDH are plug-and-play components, al-
lowing easy integration into existing frameworks [24,3]. Our experiments on three
public medical datasets demonstrate that HARP outperforms existing methods
across four key metrics [23,19], representing a significant advancement in medical
image segmentation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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