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Abstract. Counterfactual image generation is a powerful tool for aug-
menting training data, de-biasing datasets, and modeling disease. Cur-
rent approaches rely on external classifiers or regressors to increase the
effectiveness of subject-level interventions (e.g., changing the patient’s
age). For structure-specific interventions (e.g., changing the area of the
left lung in a chest radiograph), we show that this is insufficient, and can
result in undesirable global effects across the image domain. Previous
work used pixel-level label maps as guidance, requiring a user to provide
hypothetical segmentations which are tedious and difficult to obtain.
We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT),
which preserves the simplicity of intervening on scalar-valued, structure-
specific variables while producing locally coherent and effective coun-
terfactuals. We demonstrate the capability of generating realistic chest
radiographs, and we show promising results for modeling coronary artery
disease. Code: https://github.com/biomedia-mira/seg-cft.
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1 Introduction

Causal questions, such as “How would this patient’s disease have progressed if
treatment A had been administered instead of treatment B?”, are fundamental
to scientific inquiry and clinical decision-making. Addressing such questions re-
quires a causal framework capable of simulating realistic scenarios from observed
data—going beyond conventional statistical models that primarily capture cor-
relations. Causal models explicitly represent how changes in one factor influence
another, enabling the exploration of both real-world interventions and hypothet-
ical, or counterfactual, scenarios. The ability to generate counterfactual images
has become particularly valuable in medical imaging, where it facilitates a range
of applications, including data augmentation [11,26], bias mitigation [15], ex-
plainability [23], and disease progression modeling [25]. By enabling targeted
modifications to patient images, counterfactual generation can support model
generalization, improve interpretability, and allow researchers to explore alter-
native clinical pathways.

https://github.com/biomedia-mira/seg-cft
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Recent efforts [16,14,34,38,29,6] have tried to integrate causality with deep
generative models, including GANs [7], VAEs [13], and diffusion models [30,8,31].
However, most methods focus on association or intervention, without a princi-
pled approach to counterfactual reasoning—the highest level in Pearl’s causal
hierarchy. Notable exceptions include Neural Causal Models (NCMs) [35,36,20]
and Deep Structural Causal Models (DSCMs) [21,18,5], which integrate causal
structures with deep generative models.

Ribeiro et al. [5] proposed to train the generative causal model using a hi-
erarchical variational auto-encoder (HVAE) conditioned on the assumed causal
parents. However, relying solely on standard likelihood-based training was found
to result in suboptimal axiomatic effectiveness [18], meaning that the generative
model may fail to enforce counterfactual consistency—ignoring conditioning on
intervened-upon parents in the forward model post-abduction [37]. To address
this, counterfactual fine-tuning (CFT) was proposed as an additional step, refin-
ing the HVAE with pretrained parent classifiers or regressors to improve adher-
ence to causal structure [5]. To this end, previous works [5,37,26,27,10] focused
on patient-level characteristics (e.g., sex, age, disease status). The effectiveness
of DSCM and CFT has not been validated on structure-specific interventions,
such as modifying specific anatomical regions or localized diease patterns.

In this paper, we focus on these structure-specific interventions. We find
that the previous CFT with regressors (Reg-CFT) is not sufficient for locally
coherent and targeted counterfactual generation. To enable localized control of
image generation, one potential approach is using segmentation masks to guide
generative models [24,1]. But integrating masks into a causal framework poses
challenges: (i) defining their causal role remains unclear, and (ii) requiring pre-
defined counterfactual masks reduces usability as these are difficult to obtain.

Recent work has shown that medical image classifiers often rely on spurious
or non-local features, motivating the use of spatial supervision via segmenta-
tion to improve specificity and robustness [9,17,28,2]. Building on this insight,
we propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), a method
for fine-grained anatomical control in counterfactual image generation. We use
scalar-valued variables (e.g., the area of the left lung) as guiding signals for
counterfactual generation, which preserves the simplicity of the user interac-
tion, avoiding any inputs at the pixel-level. In Seg-CFT, we utilise pre-trained,
weight-frozen segmentors to increase the counterfactual effectiveness of DSCMs.
The values for the intervened variables are directly determined from the obtained
segmentations and compared against the desired user-specified target value in the
loss function when fine-tuning the DSCM output. This enables a simple mecha-
nism for intervening directly on structure-specific properties and, as we will show,
yields locally coherent and targeted modifications of anatomical structures.

In summary, our key contributions are the following:

– We propose a novel guidance mechanism for counterfactual fine-tuning, which
enables fine-grained structural control of localised interventions.



Segmentor-Guided Counterfactual Fine-Tuning for Image Synthesis 3

– We provide a comparative analysis against state-of-the-art regressor-based
counterfactual fine-tuning of DSCMs, highlighting the improved effectiveness
of our approach.

– We demonstrate the capability of generating realistic counterfactual chest
radiographs. We also show promising early results on the application of mod-
elling coronary artery disease progression.

2 Method

2.1 Review of DSCM

Structural Causal Models (SCMs) [22] are defined by a triplet ⟨U,A, F ⟩, where
U = {ui}Ki=1 represents a set of exogenous variables, A = {ai}Ki=1 a set of endoge-
nous variables, and F = {fi}Ki=1 a set of functions satisfying ak := fk(pak, uk),
where pak ⊆ A \ ak are the direct causes (or parents) of ak. SCMs enable
interventions through the do-operator, e.g., by modifying one or more parent
variables. Counterfactual inference involves three steps: (i) Abduction: inferring
exogenous noise from observed data; (ii) Action: applying an intervention, e.g.
do(ak := c); and (iii) Prediction: computing counterfactual outcomes using the
modified model and the inferred posterior over the exogenous variables.

Deep Structural Causal Models (DSCMs) were introduced in [21] and later re-
fined in [5] for high-resolution counterfactual image generation. Given an image
x, let {a1, . . . , aK−1} ⊇ pax be its ancestors. Each low-dimensional attribute
follows an invertible conditional normalizing flow, ak = fk(uk;pak), making ab-
duction explicit and tractable. For high-dimensional variables like images, the
generative mechanism is implemented via a Hierarchical Variational Autoen-
coder (HVAE). To generate a counterfactual image, we first infer the exogenous
noise for the image, z ∼ qϕ(z | x,pax), where qϕ is the HVAE encoder. Similarly,
the exogenous noise for attributes is inferred as uk = f−1

k (ak;pak). We then per-
form an intervention by setting ai := c, allowing for modifications to multiple
attributes simultaneously. Using the abducted noise uk, we compute counterfac-
tual parent values p̃ax and generate the counterfactual image, x̃ = gθ(z, p̃ax).

2.2 Regressor-based Counterfactual Fine-tuning (Reg-CFT)

Previous works [5,37,10] observed that likelihood-based HVAE training may
cause ignored counterfactual conditioning, where x̃ does not respect the inter-
vened counterfactual parents p̃ax. This can be mitigated with counterfactual
fine-tuning (CFT) [5,37]. The key idea of CFT is to leverage pre-trained clas-
sifiers or regressors qξ(pax | x), and to optimise the HVAE parameters {θ, ϕ}
by maximising log qξ(p̃ax | x̃) while keeping ξ frozen. This fine-tuning step en-
courages the DSCM to generate faithful counterfactual images that obey the
intended interventions by enforcing p̃ax to be predictable from x̃. In this work,
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we refer to the CFT used in previous studies as Reg-CFT, as they employ pre-
trained regressors (or classifiers). For simplicity, we use the term regressor to
refer to both regressor and classifier throughout the paper.

While Reg-CFT has been demonstrated to be effective for subject-level in-
terventions, e.g., changing a subject’s sex, it has not been tested on structure-
specific interventions, e.g., reducing the size of an organ in a medical image.
We assess its effectiveness for structure-specific interventions by extracting ar-
eas of structures as scalar parent variables for x using 2D medical images. As
shown in Section 3, we find that Reg-CFT is not sufficient for these interventions,
and produces undesirable global changes. A potential reason is that with Reg-
CFT, there is insufficient guidance for DSCMs to capture the exact meaning of
(scalar-valued) variables such as organ size, as the regressor could learn potential
spurious correlations. For example, it is possible that DSCMs incorrectly learn
that the variable left lung area corresponds to the mean pixel intensities of left
lung and heart or some other spuriously correlated characteristics in the images.
As such, it may be necessary to incorporate structural and spatially coherent
information into CFT to better align the semantic meaning of scalar-valued,
structure-specific variables.

2.3 Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT)

For the rest of the paper, we focus on structure-specific interventions, i.e. chang-
ing areas of anatomical and disease-related structures in 2D images. To improve
the effectiveness of this type of intervention, one potential approach is to rely
on pixel-level segmentations to guide the generative models [24,1]. This requires
users to manually construct hypothetical, clinically plausible label maps, which
is tedious and challenging. Additionally, incorporating label maps into a causal
graph is inherently difficult, as the causal relationships between label maps and
other variables may not be obvious. It is thus desirable to preserve the simplicity
of intervening on scalar-valued causal variables while making the DSCM aware
of the spatial context of these structure-specific variables.

To this end, we introduce Segmentor-guided Counterfactual Fine-Tuning
(Seg-CFT ), a novel approach that leverages a pre-trained segmentation model

𝒙

𝑞∅ 𝑔𝜃

DSCM

෥𝒙 = 𝑔𝜃 𝒛, ෦𝒑𝒂𝑥  

Seg-CFT

𝑠𝜓(𝒛, ෦𝒑𝒂𝑥)

𝑑𝑜(∙) ෦𝒑𝒂𝑥𝒑𝒂𝑥

Intervention

ෞ𝒑𝒂𝒙

ෝ𝒎(𝒙)

෍
(𝑖,𝑗)

 

ෝ𝒎𝒊,𝒋
(𝒙)

Fig. 1: A schematic of the proposed Seg-CFT method, where we utilise pre-
trained segmentors to guide counterfactual fine-tuning of DSCMs.
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during counterfactual fine-tuning. For Seg-CFT, we retain all variables of in-
terest as scalar-valued, similar to Reg-CFT, including both subject-level and
structure-specific variables. This allows for tractable abduction, intervention and
counterfactual reasoning for causal variables.

When intervening on one or more variables with counterfactual parents p̃ax,
we first predict the segmentation label maps m̂(x) for different structures from
counterfactual images x̃ using segmentors sψ: m̂(x) ∼ sψ(m̂

(x) | x̃). Next, we
compute the areas of the structures by summing the pixel-level label probabilities
of the predicted segmentations: p̂ax =

∑
(i,j) m̂

(x)
i,j .

We then optimize the HVAE parameters {θ, ϕ} by minimizing the loss func-
tion l(p̂ax, p̃ax), where l is designed for scalar-valued variables. A schematic of
Seg-CFT is presented in Fig. 1. The key difference between Seg-CFT and Reg-
CFT is that Seg-CFT leverages pre-trained segmentors to indirectly obtain p̂ax,
whereas Reg-CFT directly predicts p̂ax using regressors. With Seg-CFT, DSCMs
must generate locally coherent and meaningful changes that affect the segmen-
tation masks produced by the segmentor. This effectively forces the DSCM to
learn the spatial context of the scalar-valued structure-specific variables. No-
tably, segmentors are used only during training in Seg-CFT. Segmentors are not
required during inference, and DSCMs can perform abduction, intervention, and
counterfactual generation in the same manner as in previous works [5].

3 Experiments and results

We conduct experiments on two datasets: the publicly available PadChest [3] and
an internal coronary computed tomography angiography (CCTA) dataset [32].
Our evaluation compares the proposed Seg-CFT with Reg-CFT for structure-
specific interventions, in particular by modifying the areas of targeted struc-
tures. For Reg-CFT, we pre-train ResNet-based regressors to predict the area
of structures. For Seg-CFT, we pre-train U-Net segmentors using a Dice loss
to produce 2D label maps. We evaluate counterfactuals via effectiveness [5,18],
which assesses whether generated images obey the counterfactual parents, i.e.
d(p̂ax, p̃ax), where d is a metric function. The segmentor used for evaluation is
not the same as the one used for fine-tuning; each is trained independently.

3.1 Study 1: Chest radiographs

We begin by evaluating our method on chest radiographs from the PadChest
dataset [3], intervening on the size of anatomical structures. We manually se-
lected around 85k subjects, removing mislabeled or low-quality images. The
resulting dataset consists of 61,714 images for training, 6,911 for validation and
17,123 for testing. All images were resized to 224×224 pixels. We consider three
structure-specific variables: left lung area (LLA), right lung area (RLA), and
heart area (HA), with sex and age included as their parents. The original Pad-
Chest data does not have segmentation masks. We use masks obtained with the
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Table 1: Quantitative evaluation of effectiveness of intervened and unintervened vari-
ables. Best results are highlighted as bold. For PadChest, we measure MAPE (%). For
CCTA, we measure MAE (mm2). Seg-CFT consistently outperforms other methods.

CFT
PadChest CCTA

Intervention LLA RLA HA Intervention NCPA CPA LA
No CFT [5]

do(LLA)
16.1 4.3 6.7

do(NCPA)
17.27 3.45 5.75

Reg-CFT [5] 13.4 2.2 5.7 14.63 6.83 12.59
Seg-CFT (Ours) 10.0 2.1 5.2 10.33 3.98 6.32
No CFT [5]

do(RLA)
3.7 16.9 5.1

do(CPA)
10.41 20.96 7.97

Reg-CFT [5] 1.3 13.3 4.6 15.61 13.88 12.10
Seg-CFT (Ours) 1.4 10.1 4.4 10.40 8.14 7.49
No CFT [5]

do(HA)
3.7 4.0 14.2

do(LA)
9.79 3.37 14.84

Reg-CFT [5] 1.3 2.1 11.8 13.51 4.98 12.66
Seg-CFT (Ours) 1.3 2.0 8.5 9.50 3.51 9.68

Real: lla = 9368 px²,
rla = 8291 px², ha = 3476 px²

Observation do(lla = 6089 px²) (-35 %) do(lla = 12647 px²) (+35 %) do(rla = 5389 px²) (-35 %) do(rla = 11193 px²) (+35 %) do(ha = 2259 px²) (-35 %) do(ha = 4693 px²) (+35 %)

Pred : lla = 8543 px²

Di
re

ct
 E

ffc
t

Pred : lla = 10329 px² Pred : rla = 7137 px² Pred : rla = 9390 px² Pred : ha = 3179 px² Pred : ha = 4055 px²

(a) Reg-CFT

(b) Seg-CFT

Fig. 2: Generated counterfactuals (CFs) with (a) Reg-CFT and (b) Seg-CFT.
First rows show original image x and CFs x̃ with segmentations for left lung
(red), right lung (green) and heart (blue). The intervened structure is highlighted
with thicker lines. Second rows show direct effect of CFs, i.e. x̃ − x. We also
report the predicted areas (px2) by segmentors on the bottom. We observe that
Seg-CFT produces more locally coherent and spatially consistent interventions.
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pre-trained segmentation model of the torchxrayvison [4] package for left lung,
right lung, and heart, respectively.

The quantitative effectiveness results are shown in Table 1, where we mea-
sure the mean absolute percentage error (MAPE) (%) of LLA, RLA and HA
for counterfactuals upon different interventions. We observe that without CFT,
counterfactuals have the highest MAPE, highlighting the importance of CFT to
mitigate ignored counterfactual conditioning. Seg-CFT achieves the best results
with the lowest MAPE for all intervened variables.

(a) Reg-CFT

(b) Seg-CFT

Fig. 3: Generated CFs with (a) Reg-CFT and (b) Seg-CFT. Left columns show
original image x and CFs x̃; right columns show direct effect of CFs, i.e. x̃− x.
Seg-CFT produces more locally coherent and spatially consistent interventions.
Green arrows indicate expected local changes in plaque with Seg-CFT, while red
arrows highlight undesirable changes of non-target structures with Reg-CFT.
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Visual examples in Fig. 2 show that both Reg-CFT and Seg-CFT produce
plausible counterfactuals, but we observe that Reg-CFT yields undesired effects
outside the intervened structures. By contrast, with Seg-CFT, we observe more
locally coherent and targeted changes, resulting in a more accurate intervention
as reflected in the LLA, RLA and HA values predicted from counterfactuals.
This suggests that with Seg-CFT, DSCMs obtain a better understanding of
which part of an image should be changed upon structure-specific interventions.

3.2 Study 2: Coronary artery disease

CCTA is an important modality for the assessment of coronary artery dis-
ease (CAD), including evaluation of the composition and volume of atheroscle-
rotic plaques. For the CCTA images, straightened curvilinear planar reformation
(sCPR) was used to create 2D images from the longitudinal cross-section of the
centerline of the left anterior descending (LAD) artery [12]. All images were
sampled at a resolution of 0.25×0.25 mm and cropped to 64×384 pixels.

Segmentation masks of the coronary lumen and plaque were also generated.
To achieve this, 3D meshes of the coronary lumen and outer wall were sampled
and rasterised in the 2D sCPR image plane, generating masks of the lumen,
calcified plaque, and non-calcified plaque [19,33]. A total of 18,433 CCTA im-
ages were used to generate samples, with 12,903 samples for training, 1,843 for
validation, and 3,687 for testing. We consider three structure-specific variables:
calcified plaque area (CPA), non-calcified plaque area (NCPA), and lumen area
(LA). For simplicity, we assume that these are independent of each other.

The quantitative effectiveness of our approach is reported in Table 1, where
we measure the mean absolute error (MAE) of NCPA, CPA, and LA in mm2.
Across all intervened variables, the proposed Seg-CFT achieves the best perfor-
mance, followed by Reg-CFT. Notably, Reg-CFT results in significantly higher
MAE for unintervened variables (indicated in gray text). This is likely due to the
regressors learning spurious correlations, which subsequently affect DSCMs dur-
ing fine-tuning. The visual results in Fig. 3 illustrate that Reg-CFT introduces
unintended global effects across non-target structures. Note how interventions on
NCPA affect the global intensity of the lumen area. In contrast, Seg-CFT yields
much more localised effects, focusing specifically on the intervened structures.
This demonstrates the advantage of incorporating segmentor-guidance in CFT.

4 Conclusion

By integrating pre-trained segmentation models during counterfactual fine-tuning,
Seg-CFT enables locally coherent and targeted interventions while maintaining
the simplicity of scalar-valued causal variables. Our experiments on PadChest
for counterfactual chest radiographs, and on a CCTA dataset for simulating
coronary artery disease progression, demonstrate that Seg-CFT outperforms
regressor-based fine-tuning. Seg-CFT results in more targeted and structure-
specific modifications while minimizing unintended global changes in uninter-
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vened regions. These findings highlight the importance of incorporating seg-
mentation information to improve anatomical consistency. Future work should
explore the causal relationship between structure-specific variables. We currently
assume independence for simplicity. Practical applications of counterfactuals in
areas such as disease progression modelling, treatment effect estimation, bias
mitigation, and data augmentation should be explored. Extending Seg-CFT to
3D medical imaging, including volumetric CT and MRI scans, is another im-
portant direction that could unlock advanced counterfactual reasoning in high-
dimensional data. Beyond controlling the area of anatomical structures, future
research could investigate whether other characteristics, such as shape, loca-
tion, or texture, can be explicitly modified within the counterfactual generation
process, providing even greater flexibility in medical image synthesis.
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