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Abstract. Glaucoma is a leading cause of irreversible blindness, and
early diagnosis is crucial for effective treatment. However, Al-assisted
glaucoma diagnosis faces challenges in fairness and data scarcity, because
AT model biases can lead to disparities across demographic groups. To
address this, we propose GlaucoDiff, a diffusion-based generative model
that synthesizes SLO images with precise control over the vertical cup-
to-disc ratio. Unlike previous methods, GlaucoDiff enables bidirectional
synthesis, generating both healthy and glaucomatous samples of varying
severity, thus enhancing the dataset diversity. To ensure anatomical fi-
delity, GlaucoDiff leverages real fundus backgrounds while generating the
optic nerve head regions. We also introduce a sample selection strategy
that filters generated images based on the alignment agreement percent-
age, compared with target optic structures, ensuring the high-quality
of the synthetic data. Experiments on two public ophthalmic datasets
demonstrate that GlaucoDiff outperforms state-of-the-art approaches in
both diagnosis and fairness measurement settings. Two independent oph-
thalmologists’ evaluations confirm the clinical relevance of the generated
images, highlighting GlaucoDiff’s potential for improving Al-driven glau-
coma diagnosis. Our code is available 2.
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1 Introduction

Severe glaucoma can lead to partial vision loss or irreversible blindness, making
early diagnosis crucial for timely treatment [1]. The scanning laser ophthalmo-
scope (SLO) is widely used in clinical screening for the detection of glaucoma
because of its cost-effectiveness compared to Optical Coherence Tomography or
other devices [2]. Previous studies [3,4] found that the incidence of glaucoma is
associated with attributes such as race, gender, and age. Although Al-powered
computer vision techniques have been widely utilized in glaucoma diagnosis
across various imaging modalities [5], the potential biases in AI models, such
as data imbalance, pose a major challenge. These biases can result in unfair sub-
optimal performance, particularly for the demographic minority groups [6,7],
leading to disparities in diagnosis and treatment. Thus, improving the fairness
of Al-assisted glaucoma diagnosis is an important and urgent task.

Fairness in Al-powered medical imaging is a critical ethical concern. Recent
studies in ophthalmic imaging have increasingly focused on addressing demo-
graphic group fairness. For example, [6] improves both fairness and overall model
performance by minimizing the Sinkhorn distance between the overall data dis-
tribution and the distributions of individual demographic groups. Another study
[7] introduced an error-bound scaling approach that re-weighted the loss function
based on the performance disparities among different identity groups, prioritiz-
ing the underrepresented groups. This approach ensures that the model does not
solely optimize overall performance but also maintains equitable accuracy across
various demographic groups. Differently, GlaucoDiff uses demographic identity
information as textual prompts for a diffusion-based generative model. By syn-
thesizing high-quality samples that are tailored to specific demographic groups,
GlaucoDiff enhances model fairness while preserving diagnostic accuracy.

Using generative models [8,9,10] for data augmentation in medical imaging
has become widespread for various disease diagnosis tasks [11]. A major chal-
lenge, particularly in ophthalmology, is ensuring anatomical structure accuracy,
especially when synthesizing SLO images with precise vascular structures. Com-
mon issues include disrupted vascular continuity, imbalanced branch-to-main
vessel ratios, and missing peripapillary vessels [12]. Recent studies have leveraged
the ControlNet-guided Stable Diffusion framework [10,14] to generate polyps
from non-polyp frames (e.g. ControlPolypNet [15]) or to synthesize cardiac le-
sion MRI and lung nodule CT images from healthy samples (e.g. LeFusion [16]).
These methods can only do unidirectional synthesis to generate diseased sam-
ples from healthy controls. FairDiff [13] employs diffusion models to generate
cup-to-disc contours, which are used to synthesize SLO images for improving
segmentation model performance. However, it fails to ensure accurate anatomi-
cal structures in the background and lacks control over vertical cup-to-disc ratio
(vCDR) values in the synthesized images. Differently, GlaucoDiff offers greater
flexibility, enabling bidirectional synthesis to controllably generate both healthy
and glaucomatous samples with varying vCDR values. This enhances dataset di-
versity and allows for the simulation and visualization of disease prognosis and
prediction. We generate the optic cup (OC) and optic disc (OD) regions via scal-
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ing the OC shape to control vCDR and ensuring the generation of high-quality
synthetic SLO images that preserve anatomical fidelity. Precise vCDR control, a
critical biomarker for glaucoma diagnosis [17], significantly improves the clinical
relevance and diagnostic applicability of synthetic data. OC and OD segmen-
tation, widely used in glaucoma diagnosis [5,18] and commercial devices [19],
facilitates seamless integration of GlaucoDiff into existing Al-based diagnostic
frameworks, offering a valuable tool for clinical research and model training.
Our main contributions are: (1) We propose GlaucoDiff that generates OC
and OD regions in SLO images with precise vCDR control, supporting bidirec-
tional synthesis. (2) We introduce a sample selection strategy that automatically
filters the generated images based on their alignment agreement with the target
OC and OD shapes. (3) Experiments show that GlaucoDiff outperforms state-
of-the-art methods in both classification accuracy and fairness metrics.

2 Method

2.1 Preliminaries

ControlNet [14] is a neural network architecture designed to enhance spatial
control in image generation tasks for large pre-trained text-to-image diffusion
models, such as Stable Diffusion [10]. It incorporates additional image conditions,
like segmentation maps or human poses, into the generation process to provide
precise spatial conditioning. The architecture consists of a locked pre-trained
model, F(-;0), and a trainable copy with parameters ©., connected through
"zero convolution" layers, Z(-;-). This design enables the integration of spatial
conditions while retaining the original capabilities of the pre-trained model. The
output feature map of ControlNet, denoted as y., is expressed as:

Ye =F(1;0) + Z(F(z + 2(¢;05,):0:);02,) (1)

Here, the function F(x;©) represents the pre-trained neural network blocks
of the Stable Diffusion model, which process the input feature map x to generate
a base output y. A zero convolution layer Z(c;©,;) transforms the conditional
input ¢ into a feature map of the same dimensions as . This transformed feature
map is added to x, forming a combined feature map that is fed into the trainable
copy F(+;0.), producing a new feature map. The new feature map is further
processed by another zero convolution layer Z(-;0,2) and subsequently added
to the base output y, resulting in the final conditioned output feature map v..
This process enables effective conditional control over image generation.

2.2 GlaucoDiff: vCDR-Controlled Glaucoma Generation

We propose GlaucoDiff, a generative model based on ControlNet that synthesizes
OC and OD regions in fundus images with controllable vCDR. By overlaying
OC and OD masks onto source images, it provides explicit spatial guidance. Un-
like prior methods that regenerate entire SLO images from segmentation masks,
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GlaucoDiff focuses on OC and OD regions and adjusts vCDR by scaling the
OC. This enables high-quality, clinically relevant synthetic data for precise oph-
thalmic data augmentation. GlaucoDiff calculates the vCDR value following [20].
Training. Fig. 1 illustrates the architecture of GlaucoDiff. During training,
the Stable Diffusion decoder is unlocked to facilitate the generation of medical
images. Instead of directly using OC and OD segmentation masks as condition
images, we overlay these masks onto the source images during pre-processing to
create Masked Images, which serve as the Condition Images for training. Demo-
graphic information and calculated vCDR are converted into sentence format,
and these textual descriptions are used as prompts for the generative model.

Input Images

Condition Images

IE | Diffusion
€ Process

Prompt (e.g.: Age 78.32, Black, Male,
Vertical Cup-to-Disc Ratio 0.8) -
s 3 | “Stabie Diffusion. | Time "y

Text Encoder 8 |

| Zero Convolution |

1
. h Encoder | Encoder
Time |
= ¥ | Decod 9 I Zero
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D m=ssp  Inference
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Masked Images Generated Images |
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Fig. 1. Tllustration of our proposed training framework, where the OC mask is scaled
to the specified vCDR during inference to generate vCDR~controlled images.

Inference. During inference, the number of samples from minority groups
is increased using the generated samples. We use the scaling method (shown
in the lower part of Fig. 1) to construct vCDR-Scaled Masked Images, which
are then used as condition inputs to the diffusion model. The vCDR value in
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the text prompt is adjusted to match the specified ratio, corresponding to the
condition images. This ensures that the generated images accurately represent
different demographic groups while producing images with the desired vCDR
ratio. To ensure accurate scaling, we maintain the center of the OC mask fixed
while proportionally scaling the OC mask to the target vCDR ratio, ensuring
that the shape of the OC mask remains unchanged. Although glaucomatous
changes to the OC and OD are clinically irreversible, the ability to simulate the
reduction of the OC is highly valuable for the purpose of data augmentation.
This approach facilitates the expansion of healthy samples, particularly when
they are underrepresented in the dataset, thus supporting more balanced and
effective training of classification models to address the bias.

Using the scaling method, GlaucoDiff efficiently generates synthetic SLO im-
ages with arbitrary vCDR values, allowing flexible creation of healthy or glau-
comatous samples for diverse, tailored datasets.

Selecting Generated Samples. Given the focus of GlaucoDiff on the struc-
tural integrity of the OC and OD regions, we devised an automatic strategy for
selecting high-quality generated samples, as illustrated in Fig. 2. The generated
samples are processed through three pre-trained segmentation models, such as
UNet [21], SAM [22], and TransUNet [23]. The predicted segmentation masks
from these models are averaged and compared to the vCDR-Scaled Masked
Images using Dice Similarity Coefficient (Dice) and the 95th percentile Haus-
dorff Distance (HD95) to ensure that the generated images maintain the desired
morphological structure. To rank the samples, we sort them by Dice scores in
descending order and HD95 values in ascending order. The ranks are summed for
each sample, and we empirically select the top 50% of samples based on cross-
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Fig. 2. Selection strategy for the generated samples based on Dice and HD95 metrics.
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validation. This selection strategy effectively balances the quantity and quality
of retained generated samples, ensuring their quality and contribution to down-
stream tasks. Based on the vCDR values of these generated samples, we label
them as either healthy or suspected glaucoma cases following the labeling crite-
ria established in [24]. Finally, the selected synthetic images are added to the
training dataset. This augmentation enhances the model’s overall classification
and fairness performance by mitigating potential biases in data distribution.

3 Experiments

3.1 Datasets and Implementation Details

We used the FairSeg [7] and FairVLMed10k [6] datasets for our experiments,
both containing SLO fundus images with demographic and clinical information.
After removing noisy images (e.g., pure black ones), we retained 5,000 images
in FairSeg, split into 3,500 for training, 500 for validation, and 1,000 for testing.
For FairVLMed10k, 7,363 images were retained, with 5,266 for training, 692 for
validation, and 1,405 for testing. Two independent ophthalmologists annotated
FairSeg with healthy and suspected glaucoma labels, while a SAM model [22], pre-
trained on the FairSeg [7] training set, was used to generate OC and OD masks
in FairVLMed10k. Both datasets grouped samples by age (young < 65, elderly >
65). We trained the GlaucoDiff for 10 epochs with a batch size of 16 and a learn-
ing rate of 5e-5. For the classification model, we used a pre-trained EfficientNet
[25] and trained for 30 epochs with a batch size of 32 and an initial learning rate of
le-5. All hyperparameters were empirically set via cross-validation experiments.
As for the evaluation metrics, we adopted classification metrics, including ACC,
AUC, Precision (Prec.), Recall, F1-Score (F1), Matthews Correlation Coefficient
(MCCQC), and Quadratic Weighted Kappa (QWK). Also, we assess the model’s
fairness using the Demographic Parity Difference (DPD) and the Difference in
Equalized Odds (DEOdds), followed by [6]. Lower values of DPD and DEOdds
indicate better fairness performance. All results are reported as percentages.

Table 1. Comparison for the overall performance of GlaucoDiff with existing methods.

Dataset|Method ACC AUC Prec. Recall F1 MCC QWK
Baseline 83.38 92.03 83.59 82.95 83.14 66.54 66.33
FairCLIP [6] 85.42 92.96 85.69 87.73 86.69 71.87 71.56

FairSeg FIN [26] 85.48 93.41 85.36 87.51 86.42 69.38 69.23
FairDomain [27] 85.36 92.79 87.21 86.69 86.95 72.45 72.14
FairVision [28] 84.89 92.72 81.93 87.46 84.60 67.34 66.01
Ours 87.31 95.24 88.62 93.85 91.13 74.76 74.19
Baseline 69.47 75.93 71.46 60.41 65.50 38.42 41.19
FairCLIP [6] 74.03 82.78 83.41 61.25 70.63 53.29 53.36

FairVL |FIN [26] 74.86 80.43 75.86 65.49 70.29 49.98 48.61

Med10k |FairDomain [27] 73.91 80.16 81.47 62.83 70.95 50.35 48.42
FairVision [28] 74.78 81.29 75.55 65.41 70.12 48.76 48.39
Ours 78.10 85.48 84.07 66.45 74.23 56.09 55.97
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3.2 Results
Classification Performance and Fairness. According to the results in Ta-

ble 1, our proposed method outperforms state-of-the-art methods across all clas-
sification metrics. On the FairSeg dataset, our recall rate is at least 6.12% higher

Table 2. Comparison of fairness metrics across various attributes for GlaucoDiff and
previous approaches, along with AUC for each group within the different attributes.

Dataset|Attribute| Method DPDJ| DEOdds| Group-wise AUCYT
Asian Black White

Baseline 27.55 44.74 96.60 94.86 91.17

FairCLIP [6] 23.39 24.28 96.83 95.72 92.26

Race FIN [26] 23.46 25.97 97.56 95.59 92.41

FairDomain [27] 26.71 29.62 96.59 93.41 92.17
FairVision [28]  23.83 37.03 97.41 96.34 91.62

Ours 21.92 13.63 98.02 97.06 94.47
Female Male
Baseline 6.36 14.17 91.19 92.36
FairCLIP [6] 1.76 6.49 91.91 93.32
FairSeg |Gender FIN [26] 1.15 3.52 92.08 93.14

FairDomain [27] 5.81 12.43 90.63 93.74
FairVision [28] 2.55 6.02 91.42  93.56

Ours 0.89 1.97 94.57 95.12
Young Elderly

Baseline 9.60 10.41 91.73 93.19

FairCLIP [6] 4.81 3.48 93.04 92.71

Age FIN [26] 3.04 7.51 93.69 93.09

FairDomain [27] 7.05 3.65 92.72  92.52
FairVision [28]  5.65 3.44 92.55 93.36

Ours 2.36 2.46 94.26 95.93
Asian Black White
Baseline 14.90 14.38 75.53 72.26 76.46
FairCLIP [6] 14.19 9.72 84.92 78.29 83.14
Race FIN [26] 7.79 13.45 85.78 79.04 80.18

FairDomain [27] 7.94 3.51 80.75 77.91 80.63
FairVision [28]  14.73 9.72 86.41 77.30 81.26

Ours 5.59 3.07 87.59 80.75 85.54
Female Male
Baseline 7.69 13.92 74.51 T7.78
. FairCLIP [6] 2.17 5.94 80.82 84.90
FairVL
Med10k Gender FIN [26] 1.91 5.91 78.64 82.41

FairDomain [27] 5.22 9.96 77.08 83.79
FairVision [28]  2.16 4.63 79.76  82.73

Ours 1.53 4.19 83.85 87.65

Young Elderly

Baseline 47.54 41.04 70.49 77.16

FairCLIP [6] 32.67 30.92 77.72  85.14

Age FIN [26] 36.05 36.28 74.39 83.39

FairDomain [27] 31.41 24.71 74.33 82.42
FairVision [28]  34.09 31.15 75.64 84.01
Ours 27.23 22.41 78.89 89.23
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than the best-performing method (e.g. FairCLIP [6]), a significant improvement
in the medical field as it directly reduces the risk of missed diagnoses, which is
critical for patient care. On both the FairSeg and FairVLMed10k datasets, Glau-
coDiff leads by at least 4.18% and 3.28%, respectively, in the F1 score compared
with FairDomain [27]. The results in Table 2 show that GlaucoDiff enhances the
classification AUC performance across all groups for each attribute and provides
the most fair classification performance in terms of the DPD and DEOdds met-
rics. The improvements in MCC and QWK (Table 1), combined with consistent
performance across imbalanced subgroups (Table 2), demonstrate GlaucoDifl’s
effectiveness and stability in medical image classification tasks. The Baseline, as
shown in Tables 1 and 2, is the model that ablates all generated data and uses
only the classification model to classify the source data. GlaucoDiff significantly
outperforms the Baseline in both classification performance and fairness metrics,
demonstrating the effectiveness of its high-quality synthetic samples for the glau-
coma diagnosis task. Additionally, while not included in the tables for brevity,
the Selecting Generated Samples strategy improves AUC and F1 by nearly 2%
on both datasets, underscoring its contribution to model performance.

Evaluation of Generated Data. The quality of the generated images was
evaluated by two ophthalmologists with 100 randomly selected synthetic im-
ages, vCDR-undisclosed. Over 90% of generated images had vCDR. consistent
with text prompts, as judged by experts. The combination of background and
vCDR-controlled OC and OD regions ensures clinical relevance, reflecting glau-
comatous and healthy characteristics. As shown in Fig. 3, GlaucoDiff generates

Source Ours LoRA SDXL  ControlNet

.

Fig. 3. Synthetic images generated by LoRA [29], SDXL [30], ControlNet [14], and
Ours. Green labels indicate glaucoma status and vCDR values.



Fairness-Aware vCDR-Controlled Generation for Glaucoma Diagnosis 9

both glaucomatous and healthy samples, showcasing its flexibility in expanding
datasets while outperforming other methods in image quality. GlaucoDiff also
provides valuable visual support for glaucoma prognosis by generating synthetic
samples with progressively increasing vCDR (Fig. 3, last row), simulating clearly
disease progression. Compared to the images generated by ControlNet[14], which
ablates GlaucoDiff’s improvements (e.g., background, vCDR control, and gener-
ated sample selection), using only OC and OD masks as conditions, our generated
images exhibit superior clinical relevance and anatomical accuracy.

4 Conlusion

We introduce GlaucoDiff, a generative model that addresses data imbalance
in fundus SLO-based glaucoma diagnosis through precise, vCDR-controlled im-
age synthesis with preserved anatomical structure. Leveraging mature clinical
OC and OD segmentation tools and the ControlNet-guided Stable Diffusion
framework, GlaucoDiff is reproducible and suitable for real-world deployment.
To ensure data quality, we adopt a sample selection strategy based on OC and
OD alignment. Compared to existing methods, GlaucoDiff offers greater flexibil-
ity and produces clinically relevant images, as validated by expert assessments.
Extensive experiments demonstrate consistent improvements in classification ac-
curacy and fairness across overall and demographic-specific evaluations.
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