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Abstract. Medical imaging plays a crucial role in assessing knee os-
teoarthritis (OA) risk by enabling early detection and disease monitoring.
Recent machine learning methods have improved risk estimation (i.e.,
predicting the likelihood of disease progression) and predictive modelling
(i.e., the forecasting of future outcomes based on current data) using
medical images, but clinical adoption remains limited due to their lack of
interpretability. Existing approaches that generate future images for risk
estimation are complex and impractical. Additionally, previous methods
fail to localize anatomical knee landmarks, limiting interpretability. We
address these gaps with a new interpretable machine learning method
to estimate the risk of knee OA progression via multi-task predictive
modelling that classifies future knee OA severity and predicts anatomi-
cal knee landmarks from efficiently generated high-quality future images.
Such image generation is achieved by leveraging a diffusion model in a
class-conditioned latent space to forecast disease progression, offering a
visual representation of how particular health conditions may evolve. Ap-
plied to the Osteoarthritis Initiative dataset, our approach improves the
state-of-the-art (SOTA) by 2%, achieving an AUC of 0.71 in predicting
knee OA progression while offering 9× faster inference time.

Keywords: Risk estimation · Knee osteoarthritis · Predictive Multi-
task Modelling · X-ray.

1 Introduction

Knee osteoarthritis (OA) is a degenerative joint disease characterised by cartilage
breakdown, bone remodelling, and joint inflammation [25]. It is a leading cause
of disability in older adults, resulting in pain, stiffness, and reduced function. The
Kellgren-Lawrence (KL) scale is commonly used to grade osteoarthritis severity,
ranging from 0 to 4 based on joint space narrowing, osteophytes, sclerosis, and
bone remodelling [13], as shown in Fig. 1. Early diagnosis enables treatment to
alter the disease course [3].

Medical imaging plays a central role in knee osteoarthritis (OA) risk esti-
mation [5] by analysing tissue changes over time. Machine learning techniques
⋆ Corresponding author.



2 Butler et al.

Fig. 1. (Left) Example of a 0 KL grade. (Right) Example of a 4 KL grade with osteo-
phytes (red), sclerosis (blue), and bone remodelling (green).

compute the likelihood of disease progression [27, 12, 28, 26, 4], but most meth-
ods generate only numerical scores, offering little visual explanation for clini-
cians [21]. For instance, if a model predicts OA progression based on X-rays,
it is crucial to understand which features, such as OA severity or anatomical
landmarks, contribute to this prediction. Predictive modelling has been rarely
explored, except for [9], which employed a highly complex image generation
process, limiting clinical practicality and lacking anatomical landmark localiza-
tion. Combining predictive modelling with future image generation and anatom-
ical landmark detection enhances interpretability, fosters trust, and supports
informed decision-making.

This paper presents a new interpretable multi-task machine learning method
for estimating the risk of knee OA progression by predicting future OA severity
grade and anatomical knee landmark localisation from efficiently generated fu-
ture images. Such image generation leverages an efficient diffusion model using
a class-conditioned latent space to forecast disease progression, offering a visual
representation of how such particular health conditions may evolve. Our key
contributions include:

– A new interpretable machine learning method for knee OA risk estimation
via multi-task prediction modelling for KL classification and anatomical knee
landmark localisation using future images generated by a diffusion model;

– A novel, compact, and efficient diffusion model that can generate high quality
future OA X-ray images conditioned only by current images.

Experiments show that our proposed method has state-of-the-art (SOTA) results
on the Osteoarthritis Initiative (OAI) dataset [5], a study on knee osteoarthritis,
delivering superior risk estimation AUC of 0.71 while being ∼ 9× faster at
inference than the previous SOTA[9] that has 0.69 AUC.

2 Related Work

Risk Estimation and Predictive Modelling methods assess risk by pre-
dicting clinical events [27, 12, 28, 26, 4] or forecasting future features [14, 17, 16,
20, 2]. While event prediction is useful, it lacks interpretability, as it does not
explain underlying causes. For instance, multiple plausible progression pathways
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Fig. 2. Overview of the method. (Top Left) VQ-VAE training. (Top Right) Diffusion
model training. (Bottom) Classifier training & inference with predicted future image
x̂12 and the risk estimated from the KL grades predicted by pγ0 and pγ12 .

could lead to mortality, yet these models often do not differentiate between
them. Similarly, feature prediction models estimate disease onset [14, 17, 16, 20]
or severity [2], often using biomarkers [20, 18] and imaging data [18, 17]. However,
their opaque reasoning limits clinical adoption [21].

Future image synthesis methods use StyleGAN [9, 19, 1], VAEs [10], flow-
based models [15, 24], and diffusion models [30]. Some rely on an input image
and patient information [19, 1, 10, 15, 24, 7, 9, 11], while others omit non-image
data like biomarkers [15, 24, 7, 9, 11]. Diffusion models now surpass GANs in im-
age quality [25] but remain computationally demanding and underutilized for
disease progression risk estimation [30]. In knee OA research, StyleGAN has
achieved SOTA accuracy [9], yet diffusion models offer superior image qual-
ity [25]. However, [9] does not generate anatomical knee landmarks, limiting
interpretability.

3 Methodology

Let D = {x0
i ,x

12
i ,y0

i ,y
12
i , {li,j}Lj=1}

|D|
i=1 represent the OAI dataset, where x0,x12 ∈

X ⊂ RH×W are knee X-ray images of a patient at an arbitrary point in time,
and 12 months afterwards, respectively. Corresponding one-hot 5-class KL clas-
sifications are y0,y12 ∈ Y ⊂ {0, 1}5. The set of L anatomical knee landmarks
at x0 is {li,j}Lj=1 ∈ L, with each landmark li,j ∈ {1, . . . ,H} × {1, . . . ,W}. Our
model comprises: 1) VQ-VAE for latent image generation, 2) a conditional diffu-
sion model for future latent images, and 3) a multi-task classifier for OA severity
prediction and anatomical knee landmarks localization (Fig. 2).
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VQ-VAE: Future image generation for risk estimation leverages diffusion mod-
els, which perform better in latent spaces than in image spaces [22]. To generate
this latent space, we use VQ-VAE, as it offers superior reconstruction qual-
ity and efficiency compared to VQ-GAN [6]. VQ-VAE consists of an encoder
eθE : X → Z and decoder dθD : Z → X , with Z ⊂ RZ as the latent space,
parameterised by θ = {θE , θD} ∈ Θ. Following [22], we enhance perceptual qual-
ity and classification by integrating a classifier pγ : Z → ∆4 for 5-class KL
classification, forming a multi-task autoencoder [8]. The model is trained with:

ℓV QV AE(θ, γ) = Ex,y∼D

[
log(p(x|zq(x))) + ||sg(ze(x))− e||22

+ β||ze(x)− sg(e)||22 − α
∑

yT log(pγ(ze(x)))
]
,

(1)

where x is the input image, ze(x) = eθE (x) is its embedding, zq(x) the quantised
embedding, sg(.) the stop-gradient operator, e the nearest codebook entry, β
controls adherence to the nearest codebook entry, α weights the classification
term, y is the one-hot class label, and pγ(.) the classifier operating in the latent
space of the diffusion model. This approach improves the classification accuracy
of future synthetic images generated by the diffusion model.

Conditional Diffusion Model: The conditional diffusion model gϕ : Z → Z,
parametrised by ϕ ∈ Φ, generates future image embeddings (12 months ahead)
conditioned on a patient’s current embedding in the latent space Z. Follow-
ing [22], it learns gϕ(z) by iteratively denoising Gaussian noise ϵ ∼ N(0, I),
using a U-Net with v-prediction [23], minimising:

ℓLDM (ϕ) = Eϵ,z12,t,z0

[
||v − vϕ(z

12
t , t, z0)||22

]
, (2)

where v = αtϵ − σtz
12 is a velocity vector, with αt and σt denoting noise and

signal proportions at step t, vϕ is estimated via U-Net, z12t is the latent embed-
ding of the future image, and z0 represents the conditioning image embedding,
concatenated with z12t for conditioning. The U-Net has four encoding/decoding
blocks and a bottleneck, with spatial self-attention in the first three and last
three blocks, and channel-wise attention elsewhere. Inference model weights are
obtained through an exponential moving average during training.

Risk Estimation via Predictive Modelling: Risk estimation uses the condi-
tional diffusion model gϕ(z0) to generate the future embedding ẑ12 from current
image embedding z0. Two classifiers, denoted by pγ0

: Z → ∆4 and pγ12
: Z →

∆4, independently classify both z0 and ẑ12. The risk, defined as the probability
of an increase in KL grade between z0 and ẑ12 [9], is computed as:

p(y = 1 | z0, ẑ12) =
∑
c<k

pγ0
(y0 = c | z0) · pγ12

(y12 = k | ẑ12), (3)

p(y = 0 | z0, ẑ12) =
∑
c≥k

pγ0
(y0 = c | z0) · pγ12

(y12 = k | ẑ12), (4)
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where y = 1 indicates an increase in KL grade, y = 0 indicates no increase,
y0 is the current KL grade, y12 is the KL grade after 12 months, and c, k ∈
{0, 1, 2, 3, 4} iterate over KL grades. The classifier from VQ-VAE multi-task
learning serves as an initial model for fine-tuning risk estimation, using

ℓCLS(γ0, γ12) = E(x,y)∼D
[
−yT log (pγ (y|z(x)))

]
, (5)

where γ0 is estimated from x0,y0, and γ12 from x12 and y12, both in D. More-
over, z0 can optionally be upscaled 2 × with bicubic interpolation at test time,
as shown in Fig. 2 – we note in the experiments of Sec. 4.3 that such upscaling
enables more accurate predictions.

Multi-task learning The multi-task classifier improves classification while pre-
dicting anatomical knee landmarks for interpretation. It is defined as pζ : Z →
∆4 ×L, where L represents L knee landmark coordinates. Deconvolutional lay-
ers are added to the classifier, followed by a 2D SoftArgmax function [29]. The
model is trained using:

ℓMTS(ζ) = E(x,y,{lj}L
j=1)∼D

−yT log [pζ (y|z(x))] + δ

L∑
j=1

||lj − l̂j ||22

 , (6)

where y is the true KL grade for latent image embedding ze(x), lj = [xj , yj ]

is a 2-dimensional landmark coordinate, l̂ is the model’s prediction, and δ is a
weighting hyperparameter.

Training Algorithm Training starts by optimizing VQVAE and its classifier,
pγ(.) with ℓV QV AE in Eq. (1). The trained VQVAE works as the foundation for
training the latent diffusion model, gϕ(.), with the loss ℓLDM in Eq. (2). Once
trained, the latent diffusion model generates future X-ray images for all dataset
samples. Next, classifiers pγ0

(.) and pγ12
(.) are fine-tuned from pγ(.) using ℓCLS

in Eq. (5), leveraging ground truth and generated future images, respectively.
Alternatively, these classifiers can be optimized with ℓMTS in Eq. (6) to jointly
learn KL classification and anatomical knee landmark prediction.

4 Experiments

4.1 Dataset and Assessment

The Osteoarthritis Initiative (OAI) dataset contains 47,027 knee radiographs
from 4,796 patients [5], captured at 0-, 12-, 24-, 36-, 48-, 72-, and 96-month
intervals. Each image is KL-graded, excluding total knee replacements, which
cannot be classified. Landmark coordinates for L = 16 joint surface points are
provided for 748 images. Following [29], all images are cropped to 5122 pixels
using a landmark prediction model, ensuring full knee visibility. Left knee images
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are flipped for consistency. The dataset is split into training (3,772), validation
(512), and testing (512) patients.

Evaluation spans classification, prediction, and risk estimation. Classifica-
tion involves estimating the current KL class y0 ∈ {0, 1, 2, 3, 4} from x0 or a
latent representation z0. Prediction forecasts KL class y12 12 months ahead.
Risk estimation generates a future latent image ẑ12 from z0 using the condi-
tional diffusion model, predicts the KL classifications y0 and y12, and calculates
the binary probability of KL class progression over 12 months based on Eqs. 3
and 4. Decreases in ground-truth KL class from y0 to y12 are assumed to be
noisy and are instead treated as stable.

Classification and prediction performance is measured using the mean area
under the receiver operating characteristic curve (mAUC), computed as the av-
erage of AUC values for each class in a one-vs-rest manner. Risk estimation is
simply measured with the AUC. We compare our method to [9], the current
SOTA for risk estimation via image generation for knee OA.

4.2 Training

The VQ-VAE is trained on the training fold for 5 epochs with a mini-batch size
of 8. It uses an Adam optimizer (β1 = 0.9, β2 = 0.999) and a cosine scheduler
(initial LR 10−4, minimum LR 10−6). Multi-task training with classification uses
α = 10−4. The model has a compression ratio of 8, a codebook size of 256, and
integrates vector quantization with the decoder.

The conditioned diffusion model is trained on image pairs spaced 12
months apart: {0,12}, {12,24}, {24,36}, and {36,48}. Images from 72 and 96
months are excluded due to 24-month gaps. Training runs for 200 epochs with
a mini-batch size of 8, using an Adam optimizer (β1 = 0.9, β2 = 0.99) and a
cosine scheduler (initial LR 10−4, minimum 10−6). The diffusion process uses
1000 time steps, and sampling applies an exponential moving average of weights
with γ = 0.995.

The classifier is trained on true 0-, 12-, 24-, and 36-month images, and
the second classifier is trained on synthetic 12-, 24-, 36-, and 48- month images
generated by the diffusion model with 100 time steps for faster inference. Training
uses mini-batches of size 8, balanced by whether KL progression occurs. Multi-
task classifiers estimates anatomical knee landmarks, trained similarly with a
landmark loss weight δ = 0.5.

4.3 Ablation Study

Classification: Tab. 1 shows lower performance in latent space than image
space. However, training the classifier within VQ-VAE mitigates this drop, and
fine-tuning further improves results, surpassing image-space classification.

Prediction: Tab. 2 shows lower accuracy than classification (Tab. 1) since labels
are not directly derived from input images. Latent-space prediction underper-
forms compared to image space, but training the classifier in VQ-VAE improves
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Table 1. Ablation study on classification.

Experiment mAUC
Image space p(y0|x0) 0.82
Latent space p(y0|z0) 0.66

+ VQ-VAE classifier training 0.70
+ fine-tune VQ-VAE classifier 0.87

Table 2. Ablation study on prediction.

Experiment mAUC
Image space p(y12|x0) 0.80
Latent space p(y12|z0) 0.57

+ VQ-VAE classifier training 0.71
+ fine-tune VQ-VAE classifier 0.84

Table 3. Ablation study on risk estimation.

Experiment AUC
Image space (ground truth x12) p(y12 > y0|x0,x12) 0.75

Latent space p(y12 > y0|z0, ẑ12) 0.57
+ VQ-VAE classifier training 0.60
+ fine-tune VQ-VAE classifier 0.63

+ multi-task training (classifier+landmark localisation) 0.65
+ 2 × upscale z0 0.71

results, with fine-tuning further enhancing performance. Despite achieving a high
mAUC of 0.84, this method predicts only probabilities, making interpretation
difficult, and remains less complex than risk estimation, which requires accurate
predictions of both y12 and y0, as discussed in the next section.

Risk Estimation: Tab. 3 evaluates risk estimation, p(y12 > y0|z0, ẑ12). The
diffusion model generates ẑ12, but image-space evaluation using x0,x12 is also
considered for reference. Latent-space performance is lower since the image-space
evaluation benefits from the ground truth future images. Training the classifier
in VQ-VAE improves results, further enhanced by fine-tuning and multi-task
learning with landmark prediction. Upscaling z0 at test time significantly boosts
performance with an AUC of 0.71, corresponding with a sensitivity of 0.83,
specificity of 0.51 and F1 score of 0.55.

4.4 Comparison with SOTA

Our method surpasses SOTA in OAI risk estimation (AUC 0.71 vs. 0.69 [9])
with significantly higher efficiency. Our training takes 12.6 hours on a single
Nvidia A6000, compared to 114.88 hours on 2× A6000s for [9], while our in-
ference is 8.7× faster (2.70s vs. 23.6s per sample). Additionally, our approach
improves interpretability by not only generating future images but also local-
izing anatomical knee landmarks, as illustrated in Fig. 3. Beyond generating
images that better align with ground truth and providing landmark estimations,
our method produces higher-resolution images than [9], further enhancing result
interpretability.
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Fig. 3. (Left) Current image with annotated landmarks. (Centre Left) True future
image (12 months ahead) with annotated landmarks. (Centre Right) Predicted future
image by [9] (note that it does not show landmarks) (Right) Predicted future image
(12 months ahead) with estimated landmarks by our method. (Top) Progressing OA
with KL grade from 2 to 3. (Bottom) No OA with KL grade 0.

5 Discussion & Conclusion

The proposed method achieves ∼ 9× faster inference and a higher risk estimation
AUC (0.71 vs. 0.69) than the current SOTA [9]. By utilising a class-conditioned
latent space, our approach enables diffusion models to generate images suitable
for predicting future disease progression and allows for a more compact model
than the SOTA (our model has 35M vs. 215M parameters in [9]), and especially
in comparison with similar methods utilising diffusion models (35M vs. 1.1B
in [30]). Furthermore, incorporating anatomical knee landmarks improves risk
estimation while providing additional interpretable outputs.

We find that test-time upscaling of z0 improves risk estimation for stable
low KL scores (0→0,1→1) and increasing high scores (2→3, 3→4) but worsens
stable high scores (3→3,4→4) and increasing low scores (0→1, 1→2). We hy-
pothesise this stems from resizing-induced bias, as joint spacing depends on size,
whereas osteophytes and sclerosis are more influenced by texture and opacity.
Additionally, the model struggles with KL class 1, likely due to its inherent ambi-
guity—representing doubtful cases rather than mild osteoarthritis—introducing
noise that affects neighboring classes (0 and 2). In contrast, clearer symptoms
classes (3 and 4) achieve the highest classification accuracy, emphasizing the
need for improved label noise handling.

The main limitation of our method is its dependence on class and landmark
annotations, which may not always be available. However, landmark annotations
are only useful for risk estimation, not for image generation.
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For future work, our flexible conditioning mechanism could be extended to
multi-image inputs, such as both knees or prior exams, to improve progression
modelling. Additionally, recent advancements in conditioning latent diffusion
models with non-image data could be explored to enhance predictions. Finally, it-
erative risk estimation could allow for longer-term forecasting beyond 12 months,
improving clinical applicability.
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