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Abstract. Resting-state fMRI has become a valuable tool for classifying
brain disorders and constructing brain functional connectivity networks
by tracking BOLD signals across brain regions. However, existing mod-
els largely neglect the multi-frequency nature of neuronal oscillations,
treating BOLD signals as monolithic time series. This overlooks the cru-
cial fact that neurological disorders often manifest as disruptions within
specific frequency bands, limiting diagnostic sensitivity and specificity.
While some methods have attempted to incorporate frequency informa-
tion, they often rely on predefined frequency bands, which may not be
optimal for capturing individual variability or disease-specific alterations.
To address this, we propose a novel framework featuring Adaptive Cas-
cade Decomposition to learn task-relevant frequency sub-bands for each
brain region and Frequency-Coupled Connectivity Learning to capture
both intra- and nuanced cross-band interactions in a unified functional
network. This unified network informs a novel message-passing mecha-
nism within our Unified-GCN, generating refined node representations
for diagnostic prediction. Experimental results on the ADNI and ABIDE
datasets demonstrate superior performance over existing methods. The
code is available at https://github.com/XXYY20221234/Ada-FCN.

Keywords: fMRI · Functional connectivity network · Disorder classifi-
cation.

1 Introduction

In the field of neuroscience, a key aim is to derive abnormal patterns in the
brain that are linked to neurological disorders such as Alzheimer’s, Autism, and
Parkinson’s. Resting-state state functional magnetic resonance imaging (fMRI)
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has been becoming a valuable technique for this objective by tracking Blood
Oxygenation Level Dependent (BOLD) signals across paired brain regions and
then constructing brain functional connectivity network where nodes represent
different brain regions and edges indicate signal correlations between them [2].
The brain functional network helps identify synchronized activity that could
serve as dynamic biomarkers for neurological disorders, facilitating early diag-
nosis and treatment.

Recent advances in graph neural networks (GNNs) have spurred signifi-
cant progress in brain functional network analysis [6, 11, 16, 17]. Models like
BrainGNN [9] employ ROI-selection pooling to highlight disease-relevant re-
gions, while PRGNN [10] enforces group-level consistency through graph pool-
ing with anatomical regularization. Complementary approaches, such as Brain-
NetCNN [7], leverage edge-to-edge convolutional filters to exploit topological
relationships, and Transformer-based architectures [21] utilize attention mecha-
nisms to model global interdependencies. Despite their success, these methods
share a critical limitation: they treat BOLD signals as monolithic time series,
disregarding the multi-frequency nature of neuronal oscillations [26]. This chal-
lenge of identifying and leveraging key frequency components is also a central
topic in the broader field of multivariate time series forecasting [22, 23]. It is
worth noting that different neurological disorders often manifest as disruptions
in specific frequency bands [20]. Therefore, the conventional practice of restrict-
ing brain functional connectivity analysis to a single, low-frequency band can
obscure critical, band-specific information present in other frequencies, leading
to a loss of sensitivity and specificity in disease diagnosis.

Recognizing this, some work has attempted to incorporate frequency informa-
tion into brain functional network analysis. Hu et al. [5] used the discrete wavelet
transform (DWT) to decompose BOLD signals into multiple frequency bands
and then constructed a sparse functional connectivity network by fusing the in-
formation from each band. MFHC [25] constructed both frequency-specific and
cross-frequency high-order functional connectivity networks to capture richer in-
teraction patterns. Tewarie et al. [12] used a multiplexed graph representation to
analyze cross-frequency interactions in magnetoencephalography (MEG) data.
While existing frequency-based methods consider multi-band information, they
suffer from two critical limitations. First, they rely on preset frequency ranges
despite the fact that individual brain functions may work differently, especially
when they have neurological disorders. This means that important brain con-
nectivity patterns related to the disease might be missed. Second, they simply
combine features from different frequency bands, but signals from distinct fre-
quencies represent different physiological processes. Mixing them directly may
fail to reveal interactions between frequencies and lead to misleading conclusions.

To address these limitations, we propose a novel framework that involves
Adaptive Cascade Decomposer and Frequency-Coupled Connectivity Learning to
enhance the analysis of brain functional connectivity. We adaptively decompose
the raw fMRI time series into task-relevant frequency sub-bands for each brain
region. This learned decomposition involves tailored low- and high-frequency sig-
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nal pairs. We then construct a comprehensive functional connectivity network,
capturing both intra-band and, importantly, nuanced cross-band interactions.
These connectivity patterns are unified into a single representation of the brain’s
functional network. This unified network is the basis for a novel message-passing
mechanism within our Unified-GCN. The GCN generates refined node represen-
tations, which are aggregated and processed by fully connected layers to produce
the final diagnostic prediction. Our contributions can be summarized as follows:

• We propose a learnable decomposition method to adaptively extract task-
relevant frequency sub-bands from fMRI time series, overcoming the lim-
itations of fixed or handcrafted frequency band definitions in existing ap-
proaches.

• We introduce a Unified-GCN framework, incorporating a novel Dual-Projection
Bilinear Attention mechanism for holistic brain network modeling. This end-
to-end framework seamlessly integrates adaptive decomposition, frequency-
aware message passing, and cross-frequency alignment through attention.

• Extensively evaluated on the ADNI and ABIDE datasets, our model demon-
strates superior diagnostic accuracy and AUROC compared to state-of-the-
art methods.

2 Method

Neurological disorder classification based on brain functional networks aims to
predict the state of the disease of each subject by using fMRI signals. Given a
set of fMRI time series X ∈ RN×T , which represents the activity of N brain
ROIs in T time points. Our objective is to learn a predictive function f : X →
y ∈ {1, 2, . . . , c}, which maps the fMRI signals to a diagnostic label.

As illustrated in Fig. 1, Ada-FCN consists of three key components: an adap-
tive cascade decomposer, a frequency-coupled connectivity learning network, and
classification head and loss function.

2.1 Adaptive Cascade Decomposer

Existing methods for fMRI-based disorder identification often overlook the com-
plex interplay between different frequency components, and preset or full bands
might not optimally capture the diverse neural information present across dif-
ferent tasks or individuals. To address this limitation, we introduce an adaptive
cascade decomposer that adaptively decomposes the original time series into a
hierarchy of frequency sub-bands. Given X = [x1, . . . , xN ]⊤ ∈ RN×T , where
xi ∈ RT denotes the time series of the i-th ROI, We define L0

i = xi as the ini-
tial input. For each ROI i, and at each level k ∈ {1, . . . ,K}, the decomposition
proceeds in two steps:

Lk
i = Fk

L

(
Lk−1
i

)
, Hk

i = Fk
H

(
Lk−1
i − Lk

i

)
, (1)

where Lk
i is the low-frequency approximation at level k and Hk

i is the corre-
sponding high-frequency residual. The low-frequency extraction operator Fk

L(·)
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Fig. 1. The framework of Ada-FCN for fMRI-based brain disorder classification.

is implemented using a dilated 1D convolution with an appropriately chosen
kernel, padding, and dilation factor, followed by a LeakyReLU activation. In
contrast, the high-frequency extraction operator Fk

H(·) employs a separate 1D
convolution with a smaller kernel and standard padding, without an intervening
activation function to refine the residual signal. In this manner, for each ROI i,
we obtain a cascade of sub-band signals:

X̃ = {(L1
i , H

1
i ), . . . , (L

K
i , HK

i )} , (2)

where each pair (Lk
i , H

k
i ) represents the low-frequency approximation and high-

frequency residual at the k-th scale. By stacking these 2K sub-band signals along
a new dimension, the original fMRI time series X ∈ RN×T is transformed into
a multi-band representation X̃ ∈ R(2K)×N×T .

2.2 Frequency-Coupled Connectivity Learning

Intra-Band Connectivity via Dynamic Thresholding. Intra-band connec-
tivity is crucial because each frequency band offers distinct insights into brain
function. We use an adaptive dynamic threshold to retain robust connections tai-
lored to each band’s statistics, effectively filtering out noise. For each subject’s
decomposed sub-bands X̃ ∈ R(2K)×N×T , we compute the Pearson correlation to
generate a connectivity matrix C(k) = Pearson

(
X̃(k)

)
∈ RN×N , k = 1, . . . , 2K,

then apply an dynamic threshold to eliminate weak connections:

A
(k)
intra = Tτk

(
C(k)

)
, Tτk(·) : maskij =

{
1, if |C(k)

ij | > τk,

0, otherwise,
. (3)
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These 2K sparsified intra-band matrices are then integrated using the Kronecker
direct sum Aintra =

⊕2K
k=1 A

(k)
intra ∈ R(2KN)×(2KN) which is a block-diagonal

matrix capturing intra-band transitions within each sub-band.

Cross-Band Coupling with Dual-Projection Bilinear Attention. To
model interactions across frequency bands, we adopt an attention-based cou-
pling mechanism that learns off-diagonal adjacency blocks. Consider two dis-
tinct frequency bands s,m ∈ {1, 2, 3, . . . , 2K}, s ̸= m. Let C(s), C(m) ∈ RN×N

be their correlation matrices. First, each matrix is transformed into source or
target spaces via learnable weights W

(s)
src, W

(m)
tgt ∈ Rd×d, where d is the hid-

den dimension. Concretely, we obtain S(s) = C(s) W
(s)
src ∈ RN×d and M (m) =

C(m) W
(m)
tgt ∈ RN×d. This dual-projection allows asymmetric and band-specific

interactions. Next, we compute the bilinear interaction S(s)
(
M (m)

)⊤, where each
entry in the resulting RN×N matrix captures the pairwise similarity between the
i-th row of S(s) and the i-th row of M (m):

A(s,m)
cross = S(s)

(
M (m)

)⊤
. (4)

Finally, we construct Across ∈ R(2KN)×(2KN) by arranging all cross-band matri-
ces A

(s,m)
cross at off-diagonal blocks corresponding to band pairs, while setting the

diagonal blocks to zero.

Unified Graph Convolution. The unified graph convolution integrates both
intra-band and cross-band connectivity patterns to enable holistic message pass-
ing across all frequency-specific nodes, by:

Aunified = Aintra + λAcross ∈ R(2KN)×(2KN), (5)

H0 = Stack
(
C(1), C(2), . . . , C(2K)

)
∈ R(2KN)×N , (6)

where λ is a learnable scaling factor that balances the contribution of cross-
band interactions. The initial node features H0 are derived from the raw Pearson
correlation matrices. These are used for unified graph convolution:

H(i) = σ
(
D− 1

2AunifiedD
− 1

2H(i−1)W (i)
)
, (7)

where W (i) is the learnable weight matrix for the i-th layer, D is the degree
matrix computed from the unified adjacency matrix Aunified and σ(·) is the
activation function(e.g., ReLU).

2.3 Classification Head and Loss Function

Classification Head. Let Z ∈ R(2KN)×d denote the node representations out-
put by the final unified graph convolution layer, where i is the hidden dimension.
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To obtain graph-level classification features, we first split the multi-band repre-
sentations as Z = [Z(1); . . . ;Z(2K)] to obtain the embedding of each band, where
Z(k) ∈ RN×d for k = 1, . . . , 2K. For each sub-band representation Z(k), we ap-
ply mean readout to obtain graph-level embeddings and the final prediction is
computed by concatenating all sub-band embeddings and feeding them into an
MLP:

hk =
1

N

N∑
i=1

Z
(k)
i ∈ Rd, ŷ = MLP

(
[h1 ∥ . . . ∥ h2K ]

)
∈ Rc, (8)

where ∥ denotes concatenation and c is the number of classes.

Loss Function. In order to make model optimization easier to converge, we
utilize three loss functions to guide the end-to-end training: (1) A commonly-
used cross-entropy loss Lce for graph classification; (2) a band diversity loss Ldiv

to encourage distinct frequency bands to capture complementary patterns; (3) a
sparsity loss Lsparse for cross-band matrices that highlights only the most salient
cross-band connections.

Ldiv =
1

2K (2K − 1)

2K∑
i=1

2K∑
j=1
j ̸=i

cos
(
hi, hj

)
, Lsparse =

∥∥∥S(s)M(m)⊤
∥∥∥
1
, (9)

where cos(·) computes cosine similarity. Ldiv operates on graph-level embeddings
{hk}2Kk=1 and ∥ · ∥1 is L1 penalty. The total loss is computed by:

Ltotal = Lcls + λ1Ldiv + λ2Lsparse, (10)

where λ1 and λ2 are trade-off hyperparameters for balancing different losses.

3 Experiments and Results

3.1 Experiment Settings

Datasets. We use two brain network datasets constructed by Xu et al. [19] for
evaluation, which are ADNI [1] for Alzheimer’s Disease (AD) and ABIDE [3] for
Autism (ASD). ADNI is categorized into four classes based on the progression
of cognitive impairment: cognitive normal (CN), significant memory concern
(SMC), mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The
dataset comprises 914 CN, 73 SMC, 264 MCI, and 65 AD samples. The time
series for each sample of AD has a length of 197. For ABIDE dataset, we fo-
cus on the binary classification task of TC vs. ASD, with 61 (44.2%) samples
from patients with ASD. We truncate the first 300 time points for samples of
ABIDE. For brain region parcellation, we employed the AAL116 atlas [13] on
both datasets.
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Table 1. Results over 10-fold-CV (Average ± Standard Deviation). The best
result is highlighted in bold while the second-best result is in underline.

Methods Year ADNI ABIDE
Accuracy(%) AUROC(%) Accuracy(%) AUROC(%)

GCN [8] 2017 62.05±4.71 63.41±3.25 67.35±4.16 67.93±3.19
GraphSAGE [4] 2017 69.55±4.86 71.79±3.32 69.92±4.12 71.28±2.49
GAT [14] 2018 64.12±2.18 66.68±4.23 63.64±3.73 62.82±4.54
BrainNetCNN [7] 2017 73.27±4.59 72.46±3.66 72.71±2.32 73.37±1.22
PRGNN [10] 2020 62.63±2.29 60.32±1.71 67.34±2.80 68.52±1.85
BrainGNN [9] 2021 74.31±1.62 69.73±2.39 74.92±1.68 74.20±2.12
Contrasformer [18] 2024 73.32±4.04 69.26±1.03 73.06±1.35 73.53±2.86
Tewarie et al. [12] 2016 74.18±2.34 72.58±1.52 66.32±4.14 67.58±4.45
MFHC [25] 2017 68.26±1.64 71.94±2.41 71.27±2.49 71.05±2.73
Hu et al. [5] 2021 67.24±3.85 72.31±2.96 66.28±1.27 67.06±2.58
Autoformer [15] 2021 65.29±3.24 63.85±2.16 68.49±4.78 67.35±3.52
Leddam [24] 2024 70.35±3.77 65.31±3.41 70.22±1.25 69.42±1.75
Ada-FCN (Ours) - 79.68±2.65 75.30±1.24 77.89±1.52 77.62±1.68

Implementation details. All experiments were conducted on a Linux server
with a NVIDIA GeForce RTX 4090 with 24GB memory. The whole network is
trained in an end-to-end manner using the Adam optimizer with an initial learn-
ing rate of 1× 10−3, a weight decay of 1× 10−4 and a batch size of 32. We use
early stopping based on AUROC metric, terminating training if AUROC does
not improve for 15 consecutive epochs. The data is split to 8:1:1 for training, val-
idation, and testing with 10-fold cross-validation. In our experiments, we found
that setting the decomposition level K = 2 in the Adaptive Cascade Decomposer
acheived the best performance on both the ADNI and ABIDE datasets.

3.2 Results

Baseline Models. We carefully choose eleven well-acknowledged neural net-
work models as our baseline methods, including : (1) General-Purpose GNNs:
GCN [8], GAT [14] and GraphSAGE [4]. (2) Advanced Brain Connectivity Net-
works: BrainNetCNN [7], BrainGNN [9], PRGNN [10] and Contrasformer [18].
(3) Frequency Domain Methods: Hu et al. [5], MFHC [25] and the work of
Tewarie et al. [12]. Although these approaches exploit multi-band representa-
tions, they generally lack a unified mechanism for adaptive cross-band connec-
tivity learning. (4) Time Series Domain Methods: We adapt Leddam [24] and
Autoformer [15], originally for long-term series forecasting, due to their learnable
decomposition strategies. We report the classification Accuracy and AUROC
over 10-fold cross-validation in Table 1.

Ablation Studies. To demonstrate the effectiveness of our proposed Ada-FCN
model, we conducted ablation studies focusing on key components. Table 2
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Table 2. Ablation study on important components in Ada-FCN on ADNI and
ABIDE datasets. The best result is highlighted in bold.

ADNI ABIDE
DT Lsparse Ldiv Accuracy (%) Accuracy (%)
✓ ✓ ✓ 79.68±1.65 77.89±1.52
✓ ✓ 77.35±1.22 76.53±1.95
✓ ✓ 76.14±1.66 73.29±1.61

✓ ✓ 79.33±1.29 76.26±1.14

Fig. 2. Distinct frequency-coupled connectivity patterns revealed by group-
averaged Aunified matrices for CN, MCI, and AD.

presents the results. DT denotes the dynamic threshold approach, where ab-
lation experiments are performed using the first 25% as the threshold value.
On both datasets, removing the DT significantly reduces accuracy, indicating
that DT is crucial for model performance. Removing Lspasity decreases Accuracy
on both datasets. This suggests that the sparsity constraint helps the model to
learn more representative brain network features. Removing Ldiv also decreases
Accuracy on both datasets. Ablation experiments show that each component of
the Ada-FCN model contributes to the final performance.

Interpretability. We visualize Aunified, which integrated intra- and cross-band
connectivity across four sub-bands, revealed distinct group differences. As shown
in Fig. 2. The AD group exhibited significantly stronger H1 intra-band connec-
tivity than CN and MCI, suggesting a potential role for altered high-frequency
oscillations in AD. While some cross-band connections (e.g., L1-H1, L2-H2) were
similar across groups, AD generally showed weaker cross-frequency interactions.
While the L1-L2 cross-band connectivity was found to be uniformly weak across
all groups, the MCI group uniquely demonstrated a prominent enhancement of
intra-band connectivity within the H1 frequency band. Furthermore, MCI often
presented connectivity patterns intermediate between AD and CN, consistent
with its potential as a prodromal AD stage.
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4 Conclusion

In this paper, we present Ada-FCN, a novel framework for neurological disor-
der classification using fMRI data, designed to overcome the limitations of prior
methods that disregard inherent multi-frequency characteristics of fMRI. Ada-
FCN adaptively extracts task-relevant frequency sub-bands, moving beyond the
constraints of pre-defined frequency ranges, and constructs a unified brain func-
tional network by capturing both intra-band and complex cross-band interac-
tions, leading to refined node representations for enhanced classification. Future
work will focus on examining the interpretability of the learned frequency-specific
features.
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