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Abstract. The transparency of deep learning models is essential for
clinical diagnostics. Concept Bottleneck Model provides clear decision-
making processes for diagnosis by transforming the latent space of black-
box models into human-understandable concepts. However, concept-based
methods still face challenges in concept capture capabilities. These meth-
ods often rely on encode features solely from the final layer, neglecting
shallow and multiscale features, and lack effective guidance in concept
encoding, hindering fine-grained concept extraction. To address these
issues, we introduce Concept Prompting and Aggregating (CoPA), a
novel framework designed to capture multilayer concepts under prompt
guidance. This framework utilizes the Concept-aware Embedding Gen-
erator (CEG) to extract concept representations from each layer of the
visual encoder. Simultaneously, these representations serve as prompts
for Concept Prompt Tuning (CPT), steering the model towards amplify-
ing critical concept-related visual cues. Visual representations from each
layer are aggregated to align with textual concept representations. With
the proposed method, valuable concept-wise information in the images
is captured and utilized effectively, thus improving the performance of
concept and disease prediction. Extensive experimental results demon-
strate that CoPA outperforms state-of-the-art methods on three public
datasets. Code is available at https://github.com/yihengd/CoPA.

Keywords: Explainable Diagnosis - Concept Bottleneck Model - Prompt
Tuning.

1 Introduction

Rapid advancements in deep learning have led to remarkable progress in medical

image analysis [15,1,22], yet ensuring model interpretability remains a critical
challenge in clinical practice [23]. Traditional post-hoc interpretability meth-
ods, such as CAM [29] and Grad-CAM [21], which provide visualizations of

model decisions, often fail to meet the high precision and reliability demands of
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medical scenarios [14,20]. To address this limitation, Concept Bottleneck Model
(CBM) [13] has emerged as a promising solution. CBM maps input images to a
predefined set of human-interpretable concepts, serving as a verifiable “bridge”
between raw inputs and final predictions, making the decision-making process
interpretable. These concepts encompass a spectrum of features, ranging from
low-level attributes like color and shape to high-level semantic features, such as
ulceration, providing deep insights into the model’s decision-making process.

However, existing CBM implementations [26,5,6,2,17] often exhibit limited
effectiveness in capturing concepts, as they typically rely on final-layer features
of the image encoder (ResNet/ViT) for concept alignment. As noted by [18,24],
although these deep representations often tend to capture high-level global se-
mantics, they inevitably overlook critical low-level and local visual patterns.
This representation deficiency leads to the inadequate encoding of concepts that
require shallow or multiscale analysis (e.g., dots and globules), ultimately im-
pacting concept alignment and disease diagnosis.

Recent integration of Vision-Language Models (VLMs) with CBMs has re-
vealed new opportunities through their pre-trained cross-modal alignment capa-
bilities [26,6,2,25]. However, due to the scarcity of annotated medical datasets,
VLMs face challenges in capturing fine-grained concept semantics, particularly
for recognizing complex pathological patterns. Furthermore, the issue of model
forgetting [27] warrants attention. After fine-tuning on downstream tasks, mod-
els may significantly forget previously encoded specialized medical knowledge.

To address these challenges, we propose Concept Prompting and Aggregating
network (CoPA) aiming at enabling fine-grained and multiscale feature capture
and differentiation for concepts. Specifically, Concept-aware Embedding Gen-
erator (CEG) is proposed to distill highly concentrated concept-aware feature
representations, which are aggregated by a selector to form the final visual con-
cept representation. Subsequently, we introduce Concept Prompt Tuning (CPT),
where the outputs of CEG serve as inputs to the next transformer layer with the
backbone frozen, guiding the concept prompt to progressively concentrate more
on concept-related features. Contrastive learning is then utilized to align visual
and textual concept representations. Finally, a gating network is employed to
weigh and combine the aligned concept representations for disease prediction.

The main contributions of our work are as follows: 1) We present Con-
cept Prompting and Aggregating (CoPA), a novel explainable network adept
at capturing multiscale and fine-grained visual concept representations. 2) We
design Concept-aware Embedding Generator (CEG), which extracts highly con-
centrated concept-related visual representations from each layer of the visual en-
coder, facilitating multilayer feature aggregation. 3) We design Concept Prompt
Tuning (CPT) technique to guide the model’s focus on target visual concepts
and mitigate the issue of knowledge forgetting. 4) Extensive experimental results
demonstrate that our CoPA outperforms state-of-the-art methods, highlighting
the efficacy of each component in our framework.
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Fig. 1. The overall pipeline of CoPA, which consists of a multi-layer visual concept
encoder, a concept alignment bottleneck layer, and a gated aggregation module.

2 Method

2.1 Overall Pipeline

The architecture of the proposed model is shown in Fig. 1. Given a data rep-
resented by triplets D = {(z,¢,y)}, where x denotes the input image, y rep-
resents the disease label and ¢ = {¢1, ¢a...cx} signifies a set of concept labels
with the number of N. Moreover, each concept ¢; belongs to a candidate set
Ci = {c}, 2, ..., ci“} (e.g., for the concept “Pigment Network”, C; = {“atypical”,
“typical”}), where k; indicates the number of elements in C; for the i*" concept.

We start with passing the image = through Multilayer Visual Concept En-
coder to generate concept-aware visual embeddings. In parallel, text embeddings
for each concept candidate set C; are generated using a frozen text encoder. After-
wards, cross-modal alignment is achieved through contrastive learning between
two modalities. Finally, the aligned representations undergo adaptive fusion and
generate disease predictions.

2.2 Multilayer Visual Concept Learning

Visual concept representation extraction comprises two critical components op-
erating at each visual encoder layer. Unlike some prior methods that predict all
concepts using a single feature map, our framework leverages concept-aware vi-
sual embeddings from Concept-aware Embedding Generator (CEG) to effectively
encode the relevant visual features associated with specific concepts. However,
the model’s capability to localize concept-aware visual information remains sub-
optimal. We attribute this to insufficient semantic guidance during encoding and
catastrophic forgetting during full-parameter fine-tuning [27]. Therefore, Con-
cept Prompt Tuning (CPT) is proposed to inject semantic guidance into feature
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extraction. Hierarchically aggregated layer-wise representations yield a unified
visual concept embedding for cross-modal alignment.

Concept-aware Embedding Generator (CEG). Our CEG takes two
sides of input: a set of learnable concept anchors and a token-wise feature map
from the visual encoder layer. Each anchor q; € R? 1 < i < N, where N denotes
the length of concept set ¢, is associated with a specific concept and serves as a
query vector to retrieve essential information from visual features. For a given
input from the [** encoder layer, we consider image embedding as both key
and value vectors k;,v; € R™*¢ where m stands for their total numbers. The
concept-aware embeddings zf € R? are computed as:

) q‘le
51 — Soft v , 1 <i <N, 1
Z omax(\/@)vl <i< (1)
zi = LN(FFN(z) +q;),1 <i <N, (2)

where FFN(-) denotes feed forward network and LN(-) denotes layer normal-
ization. By performing this operation across all encoder layers, we obtain L
embeddings, which are then aggregated by a linear selector to produce multi-
layer embeddings Z. In addition, for the I*" layer, z; also serves as input parallel
to the image embeddings, as will be discussed below.

Concept prompt tuning (CPT). Motivated by visual prompt tuning
(VPT) [10], we introduce concept prompt tuning. This design preserves the
rich representations of pre-trained models while substantially addressing the
performance degradation from excessive parameter tuning. Moreover, CPT sup-
ports concept-specific prompt design, thereby enabling self-attention mecha-
nisms within each layer to progressively amplify target visual concepts, which
significantly refines feature representations in a task-driven manner.

To be specific, let patch embeddings P; = {pf" € R4 | kp € N1 <k, < Np}
of length N, and class token embedding a; € R? denoted as input to I'" layer
@, of the original image encoder &(-;¢). We introduce concept-aware visual em-
beddings Z; = {z} c R4 lieN,1<i< N}, concatenated with a; and P, while
keeping all backbone weights 6 frozen. The entire process can be formulated as:

a, Pl =9 ([a-1,Zi-1,P;—1]),l=1,2,... L. (3)

2.3 Explainable Diagnose

For each concept, its candidate set C; is formatted into structured text templates
(e.g. “This is a dermoscopic image, the {concept title} of the lesion is {c]}”) and
encoded by a pre-trained text encoder into embeddings T; = [t1, ..., tfi] € Rkixd
where k; is the length of C;. During the concept alignment phase, contrastive
learning is applied between visual and textual concept features to maximize
their semantic consistency through alignment loss formulated as:

exp(sim(Z, £} /7))
5 exp(sim (2, 8] /7))

1 N
Econ = "Xt log (4>
VT
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where t7 is the true label of concept ¢;, 7 is a learnable temperature parameter
and sim(-,-) represents cosine similarity. Afterwards, textual embeddings are
fused into D; within the concept candidate set C; according to their normalized
similarity alignment scores for disease diagnosis.

Emulating clinical decision-making workflows where experts synthesize multi-
criteria assessments to derive conclusions and modified by [13], gated aggregation
module is employed to adaptively combine concept-aligned representations from
all learned concepts through learnable weights « that quantify each concept’s
diagnostic relevance:

N
ﬁZFc(Zai'Di)7 (5)
i=1

where F'C' denotes full-connection layer to make the final decision and D; denotes
the 7" fused textual concept representation.

During the training phase, the optimization process simultaneously mini-
mizes a composite loss function comprising concept alignment loss and diagnostic
cross-entropy loss to supervise both concept and disease classification:

L= >\£con + (1 - A)ECE(yv y)a (6)

where A € [0, 1] is a hyperparameter controlling the relative importance of con-
cept and disease accuracy.

3 Experiment

3.1 Experiment Setup

Datasets. PH? [16] comprises 200 dermoscopic images, with annotations for
five morphological features. By merging subcategories encompassing common
and atypical nevi classes, the final dataset consists of 160 nevus and 40 melanoma
cases. Derm7pt [12] consists of 1,011 dermoscopic image cases, with annotations
based on the clinical 7-point checklist. Following Bie et al. [2], we retain all seven
clinical indicators with 575 nevi and 252 melanoma cases. SkinCon [1] contains
3,690 clinical images from Fitzpatrick 17k [7]. In this study, 22 high-frequency
clinical features, each with over 50 annotation instances, are selected. The dis-
ease categories include non-neoplastic, benign, and malignant. All datasets are
randomly divided into training, validation, and test sets in a 70%:15%:15% ratio.

Implementation Details. Our framework initializes both image and text en-
coders using BiomedCLIP [28] pre-trained weights and settings. Optimization
is performed using Adam with a learning rate n=1e-5. The loss weighting coef-
ficient A controlling concept-task balance is set to 0.5 via cross-validation. All
experiments are implemented in PyTorch and executed on NVIDIA GeForce
RTX 3090 GPUs, with results averaged over three random seeds.
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Table 1. Quantitative comparison results in disease prediction in terms of area
Under Curve (AUC), accuracy and Fl-score. Results are in percentage(%).

PH? Derm7pt SkinCon
Method
AUC ACC F1 AUC ACC F1 AUC ACC F1
PCBM [26] |78.31.2 89.31.9 81.526|73.02.2 77.01.4 71.01.2|68.91.6 71.01.1 70.50.8
PCBM-h [26]192.31.5 90.71.0 83.32.6(83.31.1 79.90.9 74.51.4|69.51.7 72.31.4 72.313
CBE [17] |97.50.0 96.00.0 93.90.0 | 76.60.4 83.80.3 78.10.4|72.81.2 73.81.1 73.61.3

Explicd [6] |95.42.4 94.42.3 92.836|87.53.2 81.03.2 80.53.5|74.00.9 73.10.3 72.00.7
MICA [2] ]98.21.4 98.71.9 95.31.2(85.61.1 83.91.0 79.41.3|75.91.1 75.61.1 75.41.2
Our work 98.31,6 98.92,2 98.82,3 92.11,2 86.00,5 85.80,9 77-50.6 76.30,3 75.70,3

3.2 Experiment Result

Comparison with existing methods. To evaluate the efficacy of our ap-
proach, we compare it with existing concept-based methods on the aforemen-
tioned datasets. Methods for comparison include: PCBM [26], CBE [17], Ex-
plicd [6], and MICA [2]|. Table 1 and 2 summarize results for concept alignment
and disease classification, respectively. Our framework achieves state-of-the-art
performance across most metrics, especially on Derm7pt, where CoPA’s disease
prediction accuracy exceeds the second-best by 2.1%, and on PH? with a concept
prediction accuracy 2.6% higher than the second-best approach.

Ablation study. We conduct various ablation studies on PH? and Derm7pt
to investigate the influence of different modules and settings. Table 3 quantifies
the contribution of individual components to overall performance. Specifically,
our ablation analysis show that all designed components contribute positively,
including 1) MultiLayer Aggregation strategy (MLA), which hierarchically ag-
gregates features across encoder layers to capture multiscale features; 2) Concept
Prompt Tuning (CPT), designed to highlight the concept-specific feature; and
3) Frozen Vision Backbone (FVB) that address knowledge forgetting caused by
parameter-efficient fine-tuning. Table 3 shows that our approach, including all
three components, achieves optimal performance.

Table 2. Quantitative comparison results in concept prediction in terms of AUC,
accuracy and Fl-score. Results are in percentage(%).

PH?2 DermT7pt SkinCon
Method
AUC ACC F1 AUC ACC F1 AUC ACC F1
CBE [17] 81.3 71.6 70.0 72.2 74.1 71.0 79.3 89.0 62.1
Explicd [6] | 88.8 796 764 | 8.7 73.0 719 | 76.0 931 655
MICA [2] 83.6 75.2 68.4 78.6 76.0 72.4 | 82.6 91.7 63.8
Our work | 89.0 82.2 80.6 | 87.0 77.1 76.6 | 81.7 93.6 70.4
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Table 3. Ablation study of CoPA on PH? and Derm7pt. MLA, CPT and FVB represent
Multi-Layer Aggregation, Concept Prompt Tuning and Freezing Vision Backbone.

PH? Derm7pt

MLA CPT FVB Label Concept Label Concept
ACC F1 ACC F1 ACC F1 ACC F1

933 939 796 764 817 812 73.0 719
96.7 965 809 781 8.0 84.2 731 722
96.7 952 80.0 766 84.5 8.0 736 73.1
96.7 96.7 80.5 81.7 8.0 8.2 76.0 752
978 964 81.1 791 8.2 8.5 740 732
98.9 98.8 82.2 80.6 86.0 858 77.1 76.6

NN %X XN X%
NN NN % X%
N\ %X N\ X %X X%

3.3 Interpretability Analysis

Inspired by previous work [8,9,19], we analyze the interpretability of our model
from the following three aspects: faithfulness, understandability, and plausibility.

Faithfulness. Faithfulness refers to the extent to which explanations accu-
rately reflect the internal decision-making process of the model [3,19]. In this
study, we evaluate model’s faithfulness through manual intervention during in-
ference on Derm7pt. Specifically, as shown in Fig. 2, for positive intervention,
we set 1-2 incorrectly predicted concepts’ ground-truth confidence to 1, while for
negative intervention, we adjust 1-2 correctly predicted concepts’ ground-truth
confidence to 0, to observe the outcome changes of the disease prediction. No-
tably, other confidence of adjusted concepts is recalculated by softmax function
to ensure the probability sum equals 1. As shown in Table 4, positive inter-
ventions resulted in accuracy increase of 0.5% (single-concept) and 1.1% (two-
concept), whereas negative interventions led to accuracy reductions by 2.4% and
3.2%, respectively, showing model’s heavy reliance on concept predictions and
affirming the faithfulness of the explanations.

Understandability & Plausibility. Understandability refers that the expla-
nation’s context should be readily comprehensible to users, eliminating the ne-
cessity for technical expertise [11], while plausibility refers to the extent to which
explanations align with domain-specific human reasoning and appear credible [3].
Fig. 3 shows the examples of explanations in detail. In Fig. 3(a), we visualize
concept-associated regions and their prediction confidence scores, providing users
with a foundation to assess the acceptability of concept alignment. Fig. 3(b) illus-
trates the process of concept prediction and disease diagnosis for a data sample,
including visual concept heatmaps, concept confidence scores, gated network
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Fig.2. Intervention Examples.
ITV: Intervention

Table 4. Accuracy changes of test-time concept
intervention on Derm7pt.

weights, and diagnostic confidence. This workflow provides users with a trans-
parent and traceable insight into the entire prediction process, ensuring the
interpretability of diagnostic decisions.

Gated Fusion
Weights

Concept Concept
Vis Alignment Scores

Diagnose
Confidence
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v

[

(a)

Absent(0.94) Absent(0.98) Absent(0.94)

0) Present(0.57) Absent(0.81) Present(0.77)

Absent(0.40)  Absent(0.59) Present(0.59) Present(0.54)

Atypical(0.98) Atypical(0.56) Present(0.62) Present(0.51) Present(0.83)

Absent
Atypical
Typical

Absent
Present
Absent

Present

Absent

Present

Atypical 36%
Typical 63%

32%
14%
52%

96%
3%

99%
1%

99%

(b)

%
85% Melanoma

%
15% Nevus

Fig. 3. Illustration of understandability and plausibility, where PN, DaG, STR, RA,
BWYV stand for “Pigment Network”, “Dots and Globules”, “Streaks”, “Regression Area”,
“Blue-Whitish Veil”, respectively. (a) Heatmap visualization of concern areas for each
concept. (b) The entire process of the prediction, including concept visualization, con-
cept alignment scores, gated fusion mechanism weights, and diagnose confidence.

4 Conclusion

In this paper, we propose CoPA, a multilayer concept prompting and aggrega-
tion framework for interpretable disease diagnosis. Within the Concept-aware
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Embedding Generator (CEG) of this framework, concept anchors is employed
to query multi-scale visual features, generating densely concentrated concept
representations that are hierarchically aggregated. Furthermore, to preserve the
vast knowledge from the pre-trained vision-language model while enabling dis-
criminative fine-tuning, we introduce Concept Prompt Tuning (CPT), which
utilizes concept-aware representations as task-oriented visual prompts, guiding
the model to focus on concept-relevant features. Experiments on three datasets
demonstrate the exceptional performance and interpretability of our method.
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