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Abstract. Multimodal image segmentation has been gaining signifi-
cance with the advancement of deep learning and increasing diversity
of datasets. Although researchers have been actively exploring multi-
modal U-Net structures, improvements in the segmentation of fine fea-
tures in medical images remain limited. In this study, we propose a novel
U-Net model based on hybrid local-window attention, for multimodal
medical-image segmentation. This study aims to effectively analyze over-
lapping brain-tumor lesions and extract essential information from dif-
ferent magnetic-resonance-imaging modalities for more precise segmen-
tation. The proposed hybrid local-window—attention mechanism com-
prises local-window self-attention and cross-attention, disentangled rep-
resentation learning (DRL), and region-aware contrastive learning (RCL)
modules. We apply local-window self-attention for achieving efficiency
over global attention, and local-window cross-attention between the en-
coder and decoder to enhance the modality interaction. The hybrid local-
window—attention structure extracts modality-specific features, whereas
DRL preserves modality and lesion information. RCL utilizes the con-
trast loss within the lesions to improve segmentation. We perform com-
prehensive experiments on the BraTS 2023 and BraTS 2024 datasets and
confirm that the proposed model provides enhanced medical-image seg-
mentation performance, compared with U-Net based benchmark models
without pre-training.
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1 Introduction

Medical-image analysis has gained importance with the advent of artificial in-
telligence, and tasks such as classification, detection, and segmentation have
been actively investigated [IJ2]. Image segmentation supports clinical diagnosis
and treatment planning by distinguishing lesions, organs, and tissue in medical
images. This process allows detailed examination and is useful in early disease
detection, treatment evaluation, and surgical planning [3/4].

For this purpose, two-dimensional (2D) U-Net-based segmentation [5] has
been actively studied in the recent years. The symmetric encoder—decoder struc-
ture of U-Net preserves spatial information while extracting high-level features,
leading to its widespread use in medical-image segmentation. Various extended
models have been proposed to improve its performance. Alom et al. [6] intro-
duced a recurrent residual block to enhance feature reuse and maintain deep-
feature representation, thereby improving the segmentation performance. How-
ever, the repeated structure of this block increased the computational cost,
thereby affecting the training stability. Subsequently, some studies [7I8] pro-
posed attention-based 2D U-Net-based segmentation methods. Oktay et al. [7]
introduced self-attention to improve tumor-boundary delineation and noise sup-
pression; however, its computational complexity increased the risk of overfitting
and model intricacy. Alom et al. [§] integrated recurrent residual structures, at-
tention mechanisms, and multimodal learning to capture both local and global
features. However, this combination increased hardware demands and compli-
cated hyperparameter tuning owing to the interactions between components.
Recently, three-dimensional (3D) U-Net has emerged as a standard architec-
tural framework, which extends the 2D U-Net design into 3D medical-imaging
tasks.

For example, Isensee et al. [9] proposed nnU-Net, which configured model
architecture along with pre and postprocessing steps based on dataset charac-
teristics. This approach enabled performance optimization without additional
fine-tuning. While applicable to various imaging domains, including brain mag-
netic resonance imaging (MRI) and computed tomography (CT), its reliance
on an automated pipeline reduced its flexibility for custom modifications and
increased the execution time when processing large datasets.

On the other hand, with the increasing diversity of datasets and advance-
ments in deep-learning techniques, the need for multimodal image segmentation
capable of processing multiple medical-imaging modalities has increased. To ad-
dress this challenge, multimodal U-Net structures have been researched [IO/TT].
However, the existing approaches demonstrate limited improvements in the per-
formance of medical-image segmentation tasks that require precise classification
of small lesions and detailed structural features [12].

Existing disentangled representation learning (DRL) approaches focus on
representation separation within a single modality, lacking mechanisms to dis-
entangle shared and modality-specific features in a multimodal setting or to
integrate with contrastive learning [I8]. Similarly, prior region-aware contrastive
learning (RCL) methods emphasize global inter-class separation, limiting their
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ability to capture region-level distinctions and leverage complementary features
across modalities [19].

In this study, we propose a new U-Net model, which incorporates hybrid
local-window attention to improve multimodal medical-image segmentation. It
consists of local-window self-attention, local-window cross-attention, DRL, and
RCL as its main function modules. Here, local-window self-attention extracts
spatial and structural features from each modality in the encoder to delineate
the shape and boundary of the segmented region. Local-window cross-attention
enhances feature exchange between the encoder and decoder, enabling efficient
fusion of multimodal data. Also, DRL preserves modality-specific features while
separating essential representations for learning and RCL reduces redundant
features and refines shared feature representations.

2 Methods

We propose a new U-Net model that performs multimodal segmentation. It com-
prises a multimodal encoder, local-window self-attention module, DRL module,
local-window cross-attention module, RCL module, and decoder. It is presented

in Fig. [T,
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Fig. 1. Overall proposed architecture

2.1 Multimodal Encoder

Each imaging modality (T1, T1w, T2, and FLAIR) was processed using a sep-
arate U-Net—based encoder. In the first stage, a DoubleConv3D block with a
3x 3 x 3 convolution, instance normalization (IN), and LeakyReLU expanded the
feature channels while maintaining the spatial resolution. In the second to fourth
stages, a Conv3D block with a 3x3x3 convolution (stride 2), IN, and LeakyReL U
downsampled the features, followed by another DoubleConv3D block. This struc-
ture enabled modality-specific feature extraction and hierarchical encoding.
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2.2 Local-Window Self-Attention

The input feature map f € REXCXDXHXW wag divided into 3D windows (patches)
of size (wgq, wp, Wy ), where each window contained wy X wy, X w,, tokens (pix-

els/voxels). A 1x1x1 convolution was independently applied to each partitioned

window tensor to obtain the query (Q), key (K), and value (V). The obtained

Q, K,V tensors were then rearranged into shapes (batch x heads x tokens X

channels), and the attention mechanism was computed as follows:

. Q-KT
Self-Attention(Q, K, V) = softmax | ——— 1 -V, (1)

y/head dim

where the self-attention results were refined using 1 x 1 x 1 convolution to adjust
the channels, and the partitioned windows were restored to the original (D x
H x W) spatial structure. Finally, the self-attention results were combined with
the original features f via residual connection to produce the final output.

2.3 Disentangled Representation Learning (DRL)

The multiencoder and local-window self-attention generated four modality-specific
feature maps, which were fused into a single feature map f; using an element-wise
mean operation. The DRL block processed f; through three separate branches
(a,b,c), each applying Conv3D filters to extract spatial and channel-wise fea-
tures. IN and LeakyReLU activation were applied as follows:

fi = LeakyReLU(IN(Conv3D;(f))), i€ {a,b,c}. (2)

Conv3D filters We, Wb W€ extracted modality-invariant features. IN stabilizes
the distributions, and LeakyReLU introduced nonlinearity. The DRL block out-
put three disentangled feature maps:

DRL(ff): [fayfhfc}' (3)

These feature maps enhanced the feature representation in RCL and other tasks.

2.4 Region-aware Contrastive Learning (RCL)

The DRL block generates three 3D feature maps fq, fy, fo € REXCXDXHXW
which contained spatial information and were not directly comparable. To ad-
dress this, 3D global average pooling (GAP3D) was applied, reducing the spatial
dimensions and summarizing the features into vector representations. GAP3D
reduced the computational complexity while facilitating feature comparison, con-
verting features into a form suitable for contrastive learning. This transformation
is defined as follows:

fas oo fe € RPXC fi = GAP3D(f;), i€ {a,b,c}. (4)
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Feature similarity is quantified using the cosine similarity, which measures the
alignment between vectors. A higher value indicates a stronger similarity, whereas
a lower value indicates a greater dissimilarity. The similarity was computed as

follows: L L
F o fa - Jo . oz fa - f
m(fanfb):%u Slm(faufc): #~ (5>
[ fallllfoll 1 fallllfell
The similarity between fa and fb was treated as a positive score, indicating
proximity to the feature space, whereas the similarity between f, and f. was
treated as a negative score, indicating dissimilarity. To regulate the similarity
scores, a temperature parameter 1° was applied, which was defined as:
sim(fa, fi sim( fa, f.
pos_score = 7(fa’fb), neg_score = 7(fa’fc), (6)
- T - T
where a smaller T" amplified the contrast between the positive and negative
scores, enhancing contrastive learning, whereas a larger T' smoothed the similar-
ity distribution. Based on this, the InfoNCE loss was defined as:

Lcon(a) = - lOg eXp(pOstcore) ’ (7)
exp(pos_score) + exp(neg_ score) + €

where € denoted a small constant for numerical stability. The loss increased the
similarity between the anchor fa and positive sample fp, while decreasing the
similarity between f, and the negative sample f.. This enabled RCL to improve
the feature representation by leveraging contrastive-learning principles.

2.5 Local-Window Cross-Attention & Decoder

The decoder utilized local-window cross-attention to restore the spatial resolu-
tion by integrating the encoder feature X with feature maps fy, fi2, and fs4
obtained from the DRL module. Attention computation was based on key, value,
and query definitions. Two sets were considered: encoder-feature-based (K, V, Q)
and DRL-feature-based (K',V’). Each feature map was divided into local win-
dows before attention calculation. Scaled dot-product attention was applied as
follows:

— Qng S/ — {LUK’[/UT’ S// — waiTQ S,N/ — wag;l

Vd, TV Vi Vi

Softmax normalization converted attention scores into probability distributions,
which were used to weigh value vectors and generate the final feature maps. The
features computed within the local windows were restored to the original spatial
structures by updating the decoder features as follows:

G 1=X_1+C+ c’. (9)

Suw

(8)

The decoder features underwent further refinement through a 1 x 1 convolution.

Gl_1 = Conlel(Concat(Xl_l,Fﬁnal)). (10)
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Finally, the refined decoder feature G; was processed through a 1 x 1 convolution
to generate the segmentation output:

Y = WouG. (11)

This approach integrated the encoder information and DRL features to enhance
the segmentation performance.

2.6 Loss Function

In this study, the overall loss function combined the decoder loss and contrastive
loss:
Lseg = Lgecoder + aLconu (12)

where the weighting factor o controlled the contributions. First, Lgeccoder Was
a cross-entropy loss that aimed to train the decoder during the final learning
stage.

Ldecoder = CrossEntrOpy(Y, Yrtrue)a (13>

where Y represented the predicted segmentation map and Y,y denoted the
ground truth. Next, L.o, denoted the InfoNCE loss in eq. , which trained the
RCL [20].

3 Experiments

3.1 Dataset and Implementation Details

Dataset and Preprocessing In this study, we used the publicly available 1,251
BraT$S 2023 [13] and 1,350 BraTS 2024 [14] datasets [I5]. Each dataset consisted
of 3D brain MRI volumes, each of which was divided into four modalities: native
(T1), T1-weighted (T1Gd), T2-weighted (T2), and T2 fluid-attenuated inversion
recovery (T2-FLAIR). Each MRI volume was 240 x 240 x 155. The data sets were
divided into a 7:1:2 ratio for training, validation, and testing, respectively. During
training, the four-channel MRI volume centered on the tumor was cropped into
a 128 x 128 x 128 voxel patch using linear interpolation and nearest-neighbor
interpolation [2I]. Z-score normalization was also used to uniformly normalize
data with different contrast values. The segmentation targets were classified into
three types: Whole Tumor(peritumoral edema, necrosis, non-enhancing tumor,
and enhancing tumor, WT), Tumor Core(necrosis and non-enhancing tumor,
TC), and Enhancing Tumor(enhancing tumor, ET).

Main Experimental Details and Compared Methods All experiments
were performed using Pytorch 2.6.0 and an Nvidia A6000 GPU with 48 GB of
memory. The number of epochs was 100, and the batch size was set to 1 [22].
The learning rate was set to 0.0001 (le-4) [9], and the temperature parameter
T was set to 0.07 to enhance RCL [23]. For a baseline comparison, 3D U-Net
[5], R2U-Net [6], Attention U-Net [7], R2AU-Net [§], and nnU-Net [9] were used
without pre-training.
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Evaluation Metrics The performance was evaluated using two metrics: the
Dice Score [16] and the Hausdorff Distance 95 (HD95) [I7]. These metrics as-
sessed the overlap between segmentation regions and accuracy of the boundary
predictions.

3.2 Results and Discussion

This study evaluated the segmentation performance for three tumor regions:
WT, TC, and ET. A higher Dice Score indicated better segmentation accuracy,
whereas a lower HD95 indicated greater alignment between the predicted tumor
boundary and ground truth.

First, we compared the proposed model with U-Net [5], R2U-Net [6], Atten-
tion U-Net [7], R2AU-Net [§], and nnU-Net [9] in terms of the Dice Score and
HD95 values, the results of which are presented in Table [I] Among the com-
pared models, U-Net [5] exhibited the lowest performance, whereas nnU-Net [9]
achieved the highest performance. The proposed model demonstrated the fol-
lowing improvements compared with U-Net [5] and nnU-Net [9]. Compared to
U-Net [5], on an average, the proposed model demonstrated a Dice Score in-
crease of 4.19% for WT, 6.51% for TC, 3.97% for ET, and 5.06% in the mean
value, while HD95 decreased by 33.60% for WT, 38.47% for TC, 36.04% for ET,
and 36.33% in the mean value. Also, compared to nnU-Net [9], on an average,
the proposed model demonstrated a Dice Score increase of 1.39% for WT, 3.66%
for TC, 1.77% for ET, and 1.96% in the mean value, while HD95 decreased by
24.05% for WT, 26.87% for TC, 34.32% for ET, and 31.14% in the mean value.

Table 1. Comparison of Dice Score and HD95 for U-Net, R2U-Net, Attention U-Net,
R2AU-Net, and nnU-Net on BraTS 2023 and BraT$S 2024

BraTS 2023: Model Comparison‘ Dice Score (%, 1) ‘ HD95 (mm, )

‘WT TC ET Mean‘WT TC ET Mean
U-Net [5] 87.82 81.11 78.75 82.56 [4.61 6.11 5.97 5.56
R2U-Net [6] 89.24 83.61 79.36 84.07 [5.26 5.25 6.00 5.50
Attention U-Net [7] 89.10 83.99 79.57 84.22 [4.51 5.03 6.26 5.27
R2AU-Net [8] 89.23 84.46 79.47 84.39 [4.17 5.34 6.24 5.25
nnU-Net [9] 90.72 84.08 82.26 85.68 [3.78 5.17 6.27 5.07
Proposed 92.45 87.54 83.09 87.69(2.78 3.84 3.88 3.50
BraTS 2024: Model Comparison‘ Dice Score (%, 1) ‘ HD95 (mm, )

| WI TC ET Mean|WT TC ET Mean
U-Net [5] 88.98 83.27 79.39 83.88 [4.00 5.68 6.15 5.28
R2U-Net [6] 89.96 81.92 80.12 84.07 [3.60 6.06 6.74 5.47
Attention U-Net [7] 90.26 81.80 80.56 84.20 [3.21 5.38 6.01 4.87
R2AU-Net [8] 90.92 83.20 81.64 85.25(3.32 5.09 5.35 4.59
nnU-Net [9] 90.96 84.10 82.50 85.88 [3.07 4.70 5.35 4.38
Proposed 91.74 87.51 83.11 87.45|2.90 3.42 3.87 3.40
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Second, we conducted an ablation study on the proposed methods, as listed in
Table [2| (Model-1) served as the baseline model, achieving a mean Dice score of
83.74% and mean HD95 of 4.43 mm across both datasets. (Model-2) incorporated
self-attention to enhance the spatial-relationship learning, leading to an increase
in the Dice scores of TC and ET by 4.89% and 7.79%, respectively, while reducing
the mean HD95 to 3.94 mm. (Model-3) applied DRL to improve tumor-boundary
segmentation. While it enhanced TC and ET segmentation, the reduction in
HDO95 remained limited, indicating the need for further refinement. (Model-4)
integrated RCL to improve small-lesion recognition. This resulted in a Dice score
increase of 7.32% for the ET region and a reduction in the mean HD95 to 3.82
mm, improving boundary accuracy. (Model-5) is fully featured, incorporating
cross-attention to enhance feature interaction and information sharing. As a
result, the mean Dice Score improved by 4.58% over the baseline, while the mean
HD95 decreased by 22.80%, demonstrating the best segmentation performance
among all models.

Table 2. Segmentation performance of different methods based on Dice Score and
HD95 for BraTS 2023 and BraTS 2024

BraTS2023: Segmentation Methods ‘ Dice Score (%, 1) ‘ HD95 (mm, |)

‘WT TC ET Mean‘WT TC ET Mean
(Model-1) Baseline 90.57 83.92 77.26 83.92 |3.58 4.57 5.89 4.68
(Model-2) Baseline + Self-Att 90.95 85.05 78.21 84.74|3.17 3.89 4.59 3.88
(Model-3) Baseline + Self-Att + DRL 90.84 85.82 79.33 85.33 3.25 3.86 5.11 4.07
(Model-4) Baseline + Self-Att + DRL + RCL 91.52 86.81 82.37 86.90 |3.03 4.29 4.57 3.96
(Model-5) Baseline + Self-Att + DRL + RCL + Cross-Att|92.45 87.54 83.09 87.69|2.78 3.84 3.88 3.50
BraTS2024: Segmentation Methods ‘ Dice Score (% 1) ‘ HD95 (mm, )

| WI TC ET Mean|WT TC ET Mean
(Model-1) Baseline 90.75 82.97 76.94 83.55[3.54 3.78 5.20 4.17
(Model-2) Baseline + Self-Att 90.26 81.75 80.78 84.26 |3.17 4.56 4.24 3.99
(Model-3) Baseline + Self-Att + DRL 90.64 85.87 77.87 84.7913.35 3.66 5.27 4.10
(Model-4) Baseline + Self-Att + DRL + RCL 91.61 86.62 80.68 86.31(2.80 3.96 4.26 3.68
(Model-5) Baseline + Self-Att + DRL + RCL + Cross-Att|91.74 87.51 83.11 87.45|2.40 3.64 3.93 3.32

4 Conclusions

This study proposed U-Net—based new framework that integrated hybrid local-
window attention, DRL, and RCL for multimodal medical image segmentation.
The proposed model was evaluated using the BraTS 2023 and 2024 datasets,
with the Dice Score and HD95 as evaluation metrics, and through comparisons
with U-Net based benchmark models without pre-training. The proposed model
confirmed an improvement in medical-image segmentation performance. Abla-
tion studies verified that the hybrid local-window attention, DRL, and RCL
contributed to the model’s performance enhancement. The model effectively
captured modality-specific overlapping tumor structures, leading to improved
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segmentation of the ET, TC, and WT regions. Compared with U-Net variants,
the proposed approach extracted more detailed features, resulting in improved
segmentation accuracy. As future works, we will improve the efficiency of the
proposed attention mechanisms and perform more extensive comparisons with
pre-trained models. We will also investigate knowledge distillation and quantiza-
tion techniques to reduce model size, increase training and inference speed, and
improve memory usage.
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