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Abstract. Breast tumor segmentation in dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) achieves precise delineation of
tumor boundaries and subregions by capturing rich tissue heterogene-
ity information. However, its reliance on contrast agents may cause ad-
verse effects, and the acquisition of complete time-series data involves
a complex process. In contrast, current non-contrast image segmenta-
tion methods suffer from insufficient accuracy due to the lack of explicit
tissue heterogeneity information. To address these limitations, we pro-
pose an approach for tumor heterogeneity estimation and segmentation
in non-contrast images. The core idea is to extract tissue heterogene-
ity information from DCE-MRI and transfer it to a non-contrast image
segmentation network, achieving tumor segmentation accuracy compara-
ble to DCE-MRI-based methods. Our approach uses a vector quantized-
variational autoencoder (VQ-VAE)-based clustering model to transform
images into heterogeneity maps, capturing structural features of tumor
subregions. These maps serve as the ground truth for training. Then,
a heterogeneity information prediction model (HIPM) estimates hetero-
geneity maps from non-contrast images. These features are utilized as
prior information to guide the segmentation network, further improving
segmentation accuracy. Experimental results demonstrate that the clus-
ter compactness (CPN) and Davies-Bouldin index (DBN) of the clus-
tering reach approximately 0.05 and 0.001, respectively, indicating high
clustering accuracy. Our method provides intuitive visualization of tu-
mor heterogeneity without the need for contrast agents and significantly
improves segmentation accuracy, with Dice Similarity Coefficient (DSC),
Positive Predictive Value (PPV), and Sensitivity (SEN) increased by 20%
compared to other non-contrast image segmentation networks.
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1 Introduction

Breast cancer is one of the most common malignant tumors in women, and
its heterogeneity is reflected in aspects such as tumor size, shape, composition,
and biological behavior, which presents significant challenges for early diagno-
sis and precision treatment [9]. In breast imaging diagnosis, dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) and non-contrast magnetic
resonance imaging (non-contrast MRI) are two commonly used tools [4]. DCE-
MRI enhances tissue perfusion and permeability using gadolinium (Gad) con-
trast agents, highlighting high-intensity signals in tumor regions, revealing dy-
namic blood flow characteristics, and providing detailed information on tumor
microvasculature and tissue structure [21]. This technique includes images ac-
quired at multiple time points, providing dynamic data on how the tumor evolves
over time, with the time-intensity curve (TIC) being one of the most important
analysis tools in DCE-MRI. TIC [13] describes changes in signal intensity over
time in the tumor region and reflects heterogeneity characteristics of the tissue,
such as blood flow velocity and vascular permeability, which helps differentiate
between benign and malignant tumors.

However, gadolinium contrast agents can cause adverse reactions such as
nephrogenic systemic fibrosis and allergic reactions, limiting their widespread
use [3]. In contrast, non-contrast MRI eliminates these side effects by requir-
ing no contrast agents, while still providing essential anatomical information
about the tumor, including tumor boundaries, size, shape, and relationship with
surrounding tissues [2, 17]. This is crucial for the early detection and accurate lo-
calization of breast cancer [11]. Nonetheless, non-contrast MRI faces challenges
in accurately assessing tumor malignancy, vascularity, and invasiveness. This
is particularly evident in early breast cancer screening, where it shows limited
sensitivity to small or low-vascular tumors [7].

In recent years, deep learning has made significant progress in breast cancer
MRI segmentation research. The widely used Unet has been extensively applied
to breast tumor segmentation [14, 23]. These methods primarily focus on extract-
ing structural features from non-contrast images while neglecting the exploration
of tumor heterogeneity in non-contrast enhanced images. Some studies have em-
ployed automatic segmentation of DCE-MRI to assist in tumor region identifi-
cation [7, 21, 24, 25]. However, these methods typically rely on complete DCE-
MRI sequences [5], while the high dimensionality of the data poses challenges
in sequence feature modeling, with tumor segmentation models consuming sub-
stantial computational resources [18]. Although some studies have attempted to
generate post-contrast images from non-contrast images to reconstruct missing
time-point images in DCE-MRI [11, 3, 22], using methods such as generative ad-
versarial networks (GANs) or denoising diffusion probabilistic models (DDPMs)
[16], pixel-level image restoration is highly challenging and unstable.
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Fig. 1. Overview of proposed tumor segmentation with heterogeneity clustering mod-
els. The network operates in three phases: (a) generating a tumor heterogeneity map via
time-intensity curve clustering; (b) estimating tumor heterogeneity from non-contrast
images using a predictive network; and (c) combining structural details with the het-
erogeneity map for precise tumor segmentation and visualization. The first phase is
excluded during testing.

We propose a method combining heterogeneity estimation and tumor seg-
mentation to enhance breast cancer diagnosis accuracy and visualize tumor het-
erogeneity using non-contrast images. First, a TIC clustering method based on
VQ-VAE is designed to generate heterogeneity maps, capturing and visualizing
tumor heterogeneity from DCE-MRI. Next, a prediction network estimates het-
erogeneity information directly from non-contrast MRI, eliminating the need for
full DCE-MRI sequences. Finally, a kinetic integration segmentation network
merges structural features from non-contrast images with synthesized hetero-
geneity features, leveraging spatial-kinetic complementarity to improve segmen-
tation accuracy. This approach avoids contrast agents, simplifies key information
extraction, and improves clinical feasibility. Experimental results show improved
segmentation performance and clear tumor heterogeneity visualization, aiding
clinical diagnosis and personalized treatment.

2 Method

The proposed framework consists of a time-intensity curve clustering module
(TIC-Clustering), a heterogeneity information prediction model (HIPM), and a
Kinetic Integration Segmentation Network (KIS-Net). First, we propose an un-
supervised clustering model based on VQ-VAE, which utilizes TIC information
from DCE-MRI to divide the tumor into multiple biologically distinct subre-
gions, revealing its internal heterogeneity. Next, we employ a 3D U-Net variant
(3DUXNet) [8] to predict TIC information from the no-enhanced images, sup-
plementing heterogeneity features. Finally, we design a kinetic integration seg-
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mentation network that combines TIC predictions with structural information
from non-contrast MRI to achieve more precise tumor segmentation.

2.1 Time-Intensity Curve Clustering Module

To reduce the difficulty of obtaining heterogeneity features of lesions from non-
contrast images, we propose a clustering method based on TIC from DCE-MRI.
In the first step of this module, we refer to [10] and construct a point set of input
points based on the sequence It through Volume-to-Point mapping. As shown
in Fig. 1(a), for each voxel v, its TIC is constructed based on the signal inten-
sity St over time, represented as TICv = {S0, S1, . . . , ST }. To eliminate signal
discrepancies among individuals, the TIC is normalized as Ŝt =

St−min(S)
max(S)−min(S) .

The normalized TIC is then fed into the VQ-VAE encoder, which outputs the
low-dimensional feature representation ze. Subsequently, VQ-VAE quantizes ze
using a fixed-size learnable codebook C = {c1, c2, . . . , cK}, mapping it to the
closest cluster center zq = ck. Here, k = argminj ∥ze − cj∥2 is the cluster index,
and ck is the cluster center in the codebook. The training objective of VQ-VAE is
to minimize both the reconstruction loss and the quantization loss, ensuring that
the TIC after encoding, quantization, and decoding is accurately reconstructed,
and that the quantized features align with the codebook centers. The clustering
loss function LClustering is defined as follows:

LClustering = Lrec + βLvq = ∥TIC − ˆTIC∥22 + β∥sg[z]− ck∥22 (1)

Lrec means the reconstruction loss, and Lvq means the quantization loss. sg[·]
represents the stop-gradient operation, which prevents gradient updates from
affecting the codebook. Finally, the TIC of each voxel is assigned a clustering in-
dex,which generates multiple heterogeneity maps from the original breast image.
β is a balance hyperparameter that controls Lrec and Lvq to LClustering.

2.2 Heterogeneity Information Prediction Model

In the second step of our framework, the goal is to predict heterogeneity in-
formation solely from the T1 map, similar to that obtained from DCE-MRI.
To achieve this, we employ the well-established 3DUXNet [8], a network known
for its exceptional performance in image prediction and generation tasks. Dur-
ing training, we use the clustering results from the previous step as supervision
labels. Specifically, the prediction loss consists of Dice loss and Weighted Cross-
Entropy loss, defined as:

Lpred = LDice + LWCE (2)

where LDice represents the Dice loss, which measures the overlap between the pre-
dicted and ground truth segmentation, and LWCE denotes the Weighted Cross-
Entropy loss, which addresses class imbalance by assigning higher weights to



Tumor Segmentation with Heterogeneity Clustering in Breast MRI 5

underrepresented classes. The LDice is formulated as:

LDice = 1−
2
∑

i ŷiyi∑
i ŷi +

∑
i yi

(3)

and the LWCE is defined as:

LWCE = −
∑
i

wi (yi log(ŷi) + (1− yi) log(1− ŷi)) (4)

where ŷi and yi represent the predicted probability and ground truth label for
the i-th voxel, respectively, and wi is the weight assigned to the i-th voxel, which
is inversely proportional to the frequency of the class to address class imbalance.

2.3 Kinetic Integration Segmentation Network

In the third stage, we propose a segmentation network that integrates the pre-
dicted heterogeneity maps and non-contrast T1-weighted breast MRI images.
The multiple heterogeneity maps contain values quantifying tumor malignancy
and provide heterogeneity prior. To effectively combine the heterogeneity infor-
mation and spatial information of tumors, we designed a Kinetic Information
Fusion Block (KIFB), as shown in Fig. 1(d). Specifically, the non-contrast T1
images are processed through a convolutional network to extract structural fea-
tures. Meanwhile, this module embeds the TIC heterogeneity prior derived from
non-contrast images into high-dimensional vectors and processes them through
convolutional layers and a Sigmoid activation function. The two information
streams are fused via concatenation, followed by multiple layers of 3×3×3 con-
volutions, a Batch Normalization (BN) layer, and a final Sigmoid activation
function to output the segmentation result. The entire framework is based on
ResUnet [19] as the baseline network, optimizing information flow and gradient
propagation. Segmentation loss Lseg is defined as:

Lseg = LDice + λLBCE

=

(
1−

2
∑

i ŷiyi∑
i ŷi +

∑
i yi

)
− λ

1

N

∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi))
(5)

Here, ŷi represents the predicted probability for the i-th pixel, yi is the ground
truth label (0 or 1), and N is the total number of pixels. λ is a balancing
hyperparameter used to control contributions of LDice and LBCE to Lsegmentation.

3 Experiments

Dataset The comprehensive dataset includes 163 cases from the ISPY1 dataset
, 922 cases from the DUKE dataset , and 300 cases from Fuzhou Hospital dataset.

https://www.cancerimagingarchive.net/collection/ispy1/
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=
70226903



6 X. Xie et al.

Phase 0 Phase 1
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Fig. 2. (a) Visualization of clustering results obtained by the proposed method. (b)
Average curves of different clusters. (c) Distribution of voxel ratios.

Each case contains multi-phase DCE-MRI images and T1-weighted images. The
dataset is split into training and testing samples in a 8:2 ratio. The cases from
ISPY1 and In-house have been meticulously voxel-labeled by radiology experts,
and the manual segmentation results, carefully reviewed, serve as ground truth.
In contrast, we use "Box-to-Mask" on the DUKE dataset to generate segmenta-
tion labels, which inevitably include non-tumor regions. Therefore, we only use
this dataset in the first two stages of the network. Additionally, we use nnU-Net
[6] to generate full-breast masks for all datasets.

3.1 Experimental Setup

Implementation To conduct experiments and train the networks, we utilize
the PyTorch platform and run all experiments on a single NVIDIA RTX A40
GPU with 48 GB memory. For the clustering model network, the initial learning
rate is set to 0.005, which decays by 50% every 50 epochs, with a total of 300
epochs. For the TIC prediction network, we adopt the 3DUXNet model as the
baseline, with an initial learning rate of 0.001, and the total number of epochs
as 1000. For the TIC-guided segmentation network, the initial learning rate is
set to 0.005 and the total number of epochs is set to 300. We conduct extensive
experiments to evaluate the performance of the proposed method and compare
it with state-of-the-art (SOTA) methods. For the hyperparameters, the value of
β is set to 0.25, and the value of λ is set to 5, as adopted in [12, 24]. The code
will be published at https://github.com/millieXie/HCNet.

Comparative Methods and Evaluation Metrics We evaluate clustering
performance using four key metrics [10]; intra-cluster compactness (CPN), inter-
cluster separability (SPT), Davies-Bouldin index (DBN) and the max of TIC
cluster voxel Ratio (TVR). To evaluate the second-stage TIC prediction, we
use Mean Accuracy, and Mean Intersection over Union (Mean IoU) [8]. For a
comprehensive evaluation of the proposed segmentation method, we compare it
with baseline models using the following metrics [15]: Dice Similarity Coefficient



Tumor Segmentation with Heterogeneity Clustering in Breast MRI 7

(DSC) to quantify the overlap between manually and automatically segmented
label maps; Positive Predictive Value (PPV) and Sensitivity (SEN) to measure
segmentation precision and recall; and Average Surface Distance (ASD).

Fig. 3. The left image displays breast tumor images and their masks at different phases
(top row), along with a qualitative comparison of tumor heterogeneity maps from
various prediction networks (bottom row). The right image presents a quantitative
comparison of these networks.

3.2 Experimental Results

TIC Clustering performance analysis In the first stage, we extract TICs
from the complete DCE-MRI time series and perform cluster analysis on the
tumor regions. As shown in Fig. 2(a), the clustering visualization effectively dis-
tinguishes between tumor and non-tumor regions. Fig. 2(b) displays the average
curves of different clusters, and combined with Fig. 2(a), the heterogeneity char-
acteristics of the tumor are clearly observed. Additionally, Fig. 2(c) presents the
voxel ratio distribution of each cluster, significantly reflecting the differences in
cluster category proportions between tumor and non-tumor regions, further val-
idating the effectiveness of the proposed clustering method. To determine the
optimal number of clusters (K), we conduct an ablation experiment. The re-
sults show that when K=10, metrics such as SSE (0.0532), CPN (0.3073), DBN
(0.0010), and TVR (0.95/0.05) achieve optimal values, leading to set K to 10.
Clinical expert evaluation further confirms that the clustering results effectively
distinguish tumor regions of different malignancy levels.

Heterogeneity prediction performance analysis As shown in Fig. 3, we
present the pre-image (Phase 0), post-image (Phase 1), tumor label (Tumor la-
bel), breast label (Breast label), tumor heterogeneity map, and prediction result
from various networks (including VNet [12], ResUnet [19], and 3DUXNet [8]). It
can be observed that VNet’s prediction performance is poor, with some regions,
especially tumor edges, appearing blurred. In contrast, ResUnet shows improved
prediction results, particularly in the tumor edge regions, demonstrating higher
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MHL(Post+sub) Proposed (Pre only)GT

Non-enhanced image DMFnet (Pre)

DMFnet (Post+sub)

Vnet (Pre)

Vnet (Post+sub) ResUnet (Post+sub)

ResUnet (Basline)MHL(Pre)

PLMN (Post+sub)

Zhang et al. (Pre+Post)3DUXNet (Pre)

Fig. 4. Qualitative analysis of segmentation results. The first row shows results using
only pre-contrast images as input. The second row presents results with post-contrast
and subtraction-enhanced images as input, except our network.

Table 1. Visualization of the final segmentation results compared with other methods.

Method Pre-C Post-C Sub DSC↑ PPV↑ SEN↑ ASD↓

Zhang et al. [7] ✓ ✓ 0.5616 0.6237 0.6454 4.8751
ALMN [24] ✓ ✓ 0.5518 0.5803 0.6148 4.7572
PLMN [25] ✓ ✓ 0.6265 0.6131 0.7315 4.6446
MHL [20] ✓ ✓ 0.6295 0.6385 0.7104 4.7541
VNet [12] ✓ ✓ 0.5789 0.5991 0.7204 4.9872
3DUXNet [20] ✓ ✓ 0.5815 0.5383 0.7185 8.8854
DMFNet [1] ✓ ✓ 0.6389 0.6469 0.7421 4.2885
ResUnet (Baseline) [19] ✓ ✓ 0.6372 0.6469 0.7235 2.7667
MHL [20] ✓ 0.3624 0.5454 0.2991 53.1351
Vnet [12] ✓ 0.4182 0.4725 0.5243 60.4957
3DUXNet [8] ✓ 0.3985 0.3935 0.4525 20.0793
DMFNet [1] ✓ 0.4452 0.4649 0.4913 17.6689
ResUnet (Baseline) [19] ✓ 0.4629 0.5813 0.5232 39.0312
Proposed (pre+TIC prediction) ✓ 0.6070 0.7005 0.7101 2.2941

accuracy, though significant differences still exist in some areas. 3DUXNet ex-
cels in detail processing, and despite the highly challenging nature of the task,
it achieves optimal values in metrics such as mean accuracy (0.6740) and mean
IoU (0.6228). Given the low resolution of non-contrast images, noise interference,
and the subtle heterogeneity of tumor regions, accurately predicting TIC infor-
mation and achieving high-precision segmentation is undoubtedly an extremely
challenging task.

Kinetic integration segmentation performance analysis Table 1 presents
a comparison of the proposed method with state-of-the-art approaches. Our
method (Ours) performs excellently across multiple metrics, achieving the best
results in PPV (0.7005) and ASD (2.2941), demonstrating significant advan-
tages in prediction accuracy and boundary fitting. Our method outperforms
the baseline network using only non-contrast images in all segmentation met-
rics. Compared to networks that use both post-contrast images, the proposed
method also shows improvement. Notably, our approach relies solely on non-
contrast images, offering effective tumor heterogeneity visualization, particularly
in resource-limited clinical settings.
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4 Conclusion and Discussion

In this work, we propose a method for non-contrast breast MRI that integrates
heterogeneity parameter estimation and tumor segmentation. Our approach pre-
dicts heterogeneity parameter distributions from non-contrast images to guide
segmentation, offering clinicians intuitive insights into tumor heterogeneity. Eval-
uated on generalized datasets and compared with SOTA methods, our method
achieves superior performance, obtaining results comparable to DCE-MRI while
being safer and more cost-effective. However, challenges remain in handling com-
plex tumor regions due to significant heterogeneity and individual variability, in-
dicating potential for further refinement. Key advantages of our method include:
1) leveraging potential heterogeneity information in non-contrast images to en-
hance segmentation, and 2) improving segmentation accuracy through predicted
heterogeneity maps.
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