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Abstract. Computer-aided diagnosis (CAD) has become an essential
solution for breast ultrasound (BUS) image analysis; however, the de-
velopment of CAD systems is hindered by high-quality data scarcity
and annotation challenges. We propose a novel clinical prior-guided tu-
mor generation method that allows precise control over tumor charac-
teristics, such as size, shape, and texture, using clinical knowledge from
textual descriptions and structural masks. Additionally, our method en-
ables cross-domain data generation, enhancing the adaptability of the
synthetic data across different imaging conditions. Experiments on three
public BUS datasets demonstrate the favorable generation quality and ef-
fective cross-domain adaptation of our method. Moreover, the improved
accuracy in downstream classification and segmentation tasks further
show the clinical utility and practical effectiveness of our synthetic images
in supporting breast cancer diagnosis. The code is available at https:
//github.com/Violetphy/Clinical-Prior-Tumor-Generation.

Keywords: Breast ultrasound - Tumor generation - Diffusion model -
Cross domain adaptation - Computer-aided diagnosis.

1 Introduction

Breast cancer is a prevalent and severe disease, and early diagnosis is crucial
for improving patient outcomes [5]. Breast ultrasound (BUS) has proven to be
an essential non-invasive tool for screening and diagnosing breast cancer [9)].
The performance of existing computer-aided diagnosis (CAD) systems for BUS
is often limited by the scarcity of real annotated data due to time-consuming
annotation processes and strict privacy regulations [17].
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Deep learning-based generative models for BUS synthesis have emerged as
promising solutions, as they can augment limited real annotated datasets and
enhance training of various diagnostic models including tumor detection [26],
segmentation [4], and classification [29]. However, the randomness inherent in un-
conditional generative models often leads to synthesized images that fail to accu-
rately reflect clinically relevant characteristics [3]. Conditional generative models
guided by text that contains category information of tumors (benign/malignant),
while useful for classification tasks, still require post-processing annotations for
segmentation tasks [7]. In addition, shape-guided conditional models, though
may be utilized in different downstream tasks, typically rely on existing masks
to generate more data, often producing results using the same mask repeatedly
which leads to insufficient tumor diversity [6]. Therefore, these methods still rely
on manual annotation or existing labeled data, limiting their full potential for
autonomous data generation in medical applications. Additionally, US charac-
teristics vary largely across datasets due to differences in equipment, scanning
protocols, and patient demographics [16]. This variability creates a cross-domain
gap, impeding the adaptability of generative models trained on a single dataset.

To overcome aforementioned limitations, we propose the very first clinical-
prior guided tumor generation method for BUS, which is expected to enhance
the performance of computer-aided breast cancer diagnosis through synthetic
data. Our main contributions can be summarized as follows:

e Clinical prior-guided tumor generation framework: We introduce a
diffusion-based controllable generative framework, which leverages clinical
knowledge to constrain the generation of both structural and textural at-
tributes, ensuring that the synthetic images accurately reflect clinically rep-
resentative tumor characteristics.

e Annotation-free in generating new data with clinical compliance: In
accordance with breast imaging reporting and data system (BI-RADS) [18§],
we automatically generate masks to represent the tumor shape, and de-
sign clinical text to describe echogenicity and boundary characteristics. This
annotation-free method enables to generate new data with labels.

e Cross-domain adaptation strategy: We apply a low-rank adaptation
(LoRA) fine-tuning strategy for efficient model adaptation across different
datasets, ensuring that generated images possess domain-specific character-
istics, which is crucial for real-world clinical applicability.

e Enhancing the downstream tasks: Extensive experiments on three pub-
lic BUS datasets show the efficacy of the proposed tumor generation method,
and also validate the applicability of our method in practical downstream
classification and segmentation tasks.

2 Method

2.1 Framework Overview

We propose a clinical prior-guided tumor generation framework for BUS, illus-
trated in Fig. 1. The framework first trains a diffusion-based generative model
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Fig. 1. Overview of the proposed tumor generation framework for breast ultrasound.

with real US images, masks, and clinical text to leverage clinical knowledge.
Moreover, a LoRA-based fine-tuning strategy enables cross-domain adaptation
with fewer parameters, allowing the model to generalize different clinical datasets.
Finally, we utilize synthetic masks and clinical text to create diverse new data,
benefiting for various downstream tasks.

Joint Training Procedure The training process for the generative model is
shown in Fig. 2. The generative process is built on the stable diffusion frame-
work [22] with a ControlNet [28] for structural guidance and a pretrained text
encoder for textural refinement. Given an input image xg, we encode it using
the variational autoencoder (VAE) [14] to obtain latent representations charac-
terized by mean u and log-variance w?. The latent variable zg is sampled via the
reparameterization trick:

Z=p+woe, €e~N(0,I). (1)

The latent variable z; serves as the starting point for the forward diffusion
process, where noise is iteratively added over T' timesteps to produce noisy latent
representations z; with

Zt:\/(jétZ()*i“\/].*O_étG, (2)

where @; is the cumulative product of noise schedule parameters. UNet [23] is
employed as the denoising model €. It is trained to reverse the diffusion process
by predicting and removing noise from z; in each timestep. This denoising is
conditioned on both text and structural inputs. Specifically, clinical descriptions
are processed through a pretrained text encoder 74 to generate text embedding
e; and the mask m is processed by the encoder of ControlNet &y, generating the
structural features subsequently incorporated into the denoising networks as a
residual feature. Thus, the denoising network is represented as eg(z,t,e,&p).

Loss Function The training objective comprises two components, namely,
mean squared error (MSE) between the predicted and true noise, ensuring effec-
tive denoising, and Kullback-Leibler (KL) divergence loss from the VAE encoding
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Fig. 2. Training process for the generative model.
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to maintain a structured latent space:
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where d is the dimensionality of the latent space. The total loss is:
Liota = Lmsk + oLk, (5)

where « is a weighting factor.

2.2 Shape and Textual Constraints

Benign and malignant tumors display distinct characteristics in US images [9].
According to BI-RADS, benign tumors are typically regular, elliptical shapes
that are wider than tall, with smooth edges and uniform echo patterns. Malig-
nant tumors often appear taller than wide, with irregular shapes, complex inter-
nal structures, and diffuse boundaries due to tissue invasion and necrosis [24].

Elastic Deformation Ellipse Model for Shape Constraint To define the
basic tumor shape, we model each tumor using an ellipse with semi-major axis
a € Ny and semi-minor axis b € N, centered at (zf, y;):

2 2
x — x() n Y=Y _1 a<zhp <W-—aq, (6)
a b "lb<yh<H-b.
The center position (z{,y,) is constrained based on the image width W and
height H. Benign tumors are modeled with a > b to reflect width greater than
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height, while malignant tumors use a < b to represent height greater than width.
The size of each tumor is varied by adjusting a and b within clinical ranges,
allowing generation of small, medium, and large tumors. After creating the initial
ellipse mask, we apply an elastic deformation [12] function D(-) defined as:

mo :D(mo,U), (7)

where my is the initial binary ellipse mask, and ¢ controls the deformation level.
The larger o is, the greater the degree of elastic deformation is. Fig. 3(b) shows
the generation of tumor masks for both benign and malignant tumors.

Clinical Text Prompt for Textural Refinement Textual descriptions are
crafted based on clinical prior knowledge of benign and malignant breast tumors,
which informs the generative model’s output by conditioning it to reflect appro-
priate echogenicity and boundary clarity. Based on BI-RADS, the echogenicity
can be categorized mainly as homogeneous or heterogeneous, and the bound-
ary as clear or unclear. Thus, we utilize a text template “breast ultrasound image
of benign/malignant tumor with homogeneous/heterogeneous echogenicity
and clear/unclear boundary.” to condition different tumors.

2.3 Cross-Domain Adaptation with LoRA

LoRA is applied to the UNet module. By introducing low-rank matrices A and
B in the selected layers of the UNet, LoRA enables efficient adaptation while
minimizing the risk of overfitting. The fine-tuning of the UNet parameters 6 €
R4¥4 is represented as:

0 =6+ AB, (8)

where A € R™"™ and B € R™*? with r < d. During LoRA fine-tuning process,
only the low-rank matrices A and B in the UNet are updated according to the
loss function, while other parameters remain fixed.

3 Experiments and Results

3.1 Datasets and Experimental Settings

We evaluated our method on three public BUS datasets. BUSI dataset [1] (647
images: 437 benign/210 malignant) was randomly split into training (396), vali-
dation (54), and test (197) sets for generation and downstream tasks. UDIAT
dataset [27] (163 images: 110 benign/53 malignant) was divided into training
(130) and test (33) sets for cross-domain adaptation and downstream tasks. STU
dataset [30] (42 mask-only images) was used exclusively as an external test set
for segmentation evaluation. Fig. 3(a) shows BUS images, corresponding tumor
masks and intensity distribution plots from different datasets.

During the training process, we employed a pre-trained stable diffusion (SD)
v1-5 [22] for generative model and ControlNet [28] with the input image resized
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Fig. 3. (a) BUS images, corresponding tumor masks and intensity distribution plots
from different datasets. (b) Benign and malignant mask generation of our method.

Table 1. Generation performance comparison of different methods on BUSI dataset.
Ours-t and Ours-m denote our method with only text or mask guidance.

Method GAN CGAN DCGAN DDPM MT-DDPM SGD Ours-t Ours-m Ours
FID | 14.370 17.988 20.728 11.614 8.986 8.278 8.623 8.563 6.858
KID | 0.058 0.080 0.096 0.047 0.029 0.026 0.030 0.029 0.022

to 512x512. The weighting factor a was set to 0.001. Using gradient accumula-
tion with batch size of 64, the model was trained for 200 epochs with AdamW
optimizer. The training process employed a warm-up strategy for the first 500
steps, gradually increasing the learning rate to initial value of le-4, followed by
a constant learning rate scheduler. Note that for fairness, we reimplemented all
baselines with mask conditioning.

Fréchet Inception Distance (FID) [10] and Kernel Inception Distance(KID) [2]
were used to evaluate generation performance. The Area Under the Receiver Op-
erating Characteristic Curve (AUC) and the Dice Similarity Coefficient (DSC)
were utilized to evaluate the classification and segmentation tasks, respectively.

3.2 Comparison on Tumor Generation

Table 1 lists the generation performance comparison of different methods. Fig. 4
visualizes the generated BUS images. It can be observed that GAN-based meth-
ods (GAN [8], CGAN [19], DCGAN |21]) suffer from anatomically implausible
shapes and low image quality. While diffusion-based methods (DDPM [11], MT-
DDPM [20], SGD [15]) achieve improved realistic background, but lack tumor
specificity (e.g., indistinct echogenicity). Our method, which incorporates clinical
prior guidance, outperforms these comparison methods. Specifically, by incorpo-
rating both structural masks and clinical text descriptions, our method offers
precise control over tumor shape and texture, generating high-quality, clinically
relevant images that closely match the ground truth.

3.3 Adaptable Cross-Domain Generation

To validate the efficacy of our LoRA-based adaptation, we compared it with full
fine-tuning (859.52M trainable parameters) on the UDIAT dataset. As shown
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Fig. 4. Visual comparison of BUS images generated by different methods.

Table 2. Impact of LoRA and different ranks of LoRA on UDIAT dataset.

Model Rank FID | KID | Parameters
fully fine-tune - 8.088 0.024 859.52M
without LoRA 10.022 0.030 -

7.921 0.022 0.40M

with LoRA 7.599 0.020 0.80M

7.316 0.019 1.59M

o = N !

in Table 2, LoRA with rank » = 8 achieves comparable FID (7.316 vs. 8.088
for full fine-tuning) and KID (0.019 vs 0.024) scores while updating only 1.59M
parameters — 1.8% of the full fine-tuning parameter count. This demonstrates
that LoRA effectively adapts domain-specific features with minimal computa-
tional overhead. Notably, the baseline model (trained on BUSI) without adapta-
tion lacks of generalization (FID=10.022), highlighting the necessity of domain
transfer mechanisms for clinical deployment across different imaging systems.

3.4 Data Augmentation for Downstream Tasks

We systematically evaluated the impact of synthetic data augmentation on clas-
sification and segmentation tasks using EfficientNet-B0 [25] and nnUNet [13].

Table 3 compares different real-to-synthetic data ratios in downstream tasks.
The results indicate that incorporating synthetic images consistently improves
the model’s performance compared to training on real images alone. Regard-
less of the classification or segmentation task, or whether training on BUSI or
UDIAT dataset, the optimal performance (both in-domain and cross-domain)
is observed within a real-to-synthetic ratio range of 1:1 to 1:4. This highlights
the critical balance between real and synthetic data, as excessive synthetic pro-
portions degrade performance due to synthetic-data-induced overfitting. It is
suggested that by optimizing the ratio according to specific task and model ar-
chitecture, we can maximize the advantages of synthetic data augmentation,
ultimately contributing to more robust and generalizable processing.

We further compared ordinary augmentation method (integrating flip, bright-
ness, rotation, and noise) and SGD [15] in downstream tasks, as shown in Table 4.
Note that only our method and SGD [15] can simultaneously provide both clas-
sification and segmentation labels, while other methods [8,19,21,11,20] cannot
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Table 3. Classification (AUC) & segmentation (DSC, %) performance on the test sets
of BUSI, UDIAT, and STU with varying real-to-synthetic ratios.

Classification Segmentation
Train Real:Synthetic BUSI UDIAT BUSI UDIAT STU
BUSI Real only 0.7994+0.004 0.639£0.005 74.1+0.6 81.1£0.5 88.84+0.3
1:1 0.838+0.003 0.600+0.006 82.5+0.7 84.4+0.4 89.1+0.3
1:2 0.825+£0.005 0.572+0.004 77.0+£0.8 86.7+0.5 88.61+0.1
1:4 0.823+0.005 0.733£0.008 77.7+£0.6 85.9£0.7 88.01+0.4
1:8 0.827+0.004 0.6014+0.006 76.4+£0.6 86.0+£0.5 87.6£0.3

Synthetic only 0.764+£0.004 0.5394+0.007 64.2+£0.6 69.2+£0.5 85.4+0.2
UDIAT Real only 0.446+0.004 0.7114+0.011 50.5£0.9 88.6£0.5 89.24+0.3

1:1 0.623+0.003 0.733+0.010 60.4+0.9 87.3+0.4 90.0+0.2
1:2 0.548+0.002 0.772+0.011 69.0+£0.9 89.6+0.5 90.0+0.5
1:4 0.649+0.007 0.767+£0.008 69.5+1.1 88.0+0.4 89.6+0.3
1:8 0.630£0.003 0.739+0.011 69.3+0.9 88.1+0.5 89.3+0.3

Synthetic only 0.580£0.005 0.733+0.011 61.6£1.0 78.3+0.6 87.54+0.4

Table 4. Comparison in classification (AUC) & segmentation (DSC, %) performance
on the test sets of BUSI, UDIAT, and STU with different methods. * indicates a
significant difference p < 0.05 compared to ours.

Classification Segmentation

Train Method BUSI UDIAT BUSI UDIAT STU
BUSI Ordinary Aug 0.825+0.004* 0.636+0.003* 76.9+0.5* 82.8+0.6* 88.94+0.2*
SGD [15]  0.830£0.002* 0.724+0.006* 81.44+0.2* 84.94+0.3* 89.0+0.4
Ours 0.838+0.003 0.7334+0.008 82.5+0.7 86.7+0.5 89.14+0.3
UDIAT Ordinary Aug 0.462+0.012*% 0.724+0.003* 51.8+0.5* 87.940.3* 89.1+0.2*
SGD [15]  0.63340.006* 0.759+0.014* 68.3+0.7* 88.9+0.5* 89.84+0.3
Ours 0.649+0.007 0.7724+0.011 69.5+1.1 89.6+0.5 90.0+0.2

generate images with segmentation labels. The comparison results demonstrate
that our method outperforms ordinary augmentation and SGD [15].

4 Conclusion

The data scarcity in the medical domain, especially the lack of real patients’
images with tumors, hinders the construction of efficient and accurate diag-
nostic models. To address this, we propose a novel clinical prior-guided tumor
generation method for BUS. By leveraging both textual descriptions and struc-
tural masks, our approach enables precise control over tumor characteristics.
Additionally, we address the challenge of cross-domain image generation by in-
corporating a low-rank adaptation strategy, which allows the model to efficiently
adapt across different imaging domains. Our method demonstrates its effective-
ness through extensive experimentation on three BUS datasets, showing that it
can generate high-quality, clinically relevant tumor images with realistic struc-
tural and textural features. Furthermore, we highlight the practical benefits of
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our approach by demonstrating improvements in the performance of segmenta-
tion and classification models trained with synthetic images, thus validating its
utility for downstream medical imaging tasks.

While our method prioritizes fidelity to BI-RADS standards and anatomical
masks, biases may arise from incomplete modeling of low-level details or under-
represented edge cases in training. Future work will explicitly compare latent
representations of real vs. synthetic data to identify and mitigate such gaps.
On the other hand, by embedding clinical priors, the generated tumors reflect
diagnostically relevant features, but their clinical utility ultimately depends on
expert validation. We will propose collaborations with clinicians to evaluate the
diagnostic equivalence of synthetic data in downstream tasks in the future.
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