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Abstract. Craniomaxillofacial deformities often necessitate orthognathic
surgery to correct jaw positions and improve both function and aesthet-
ics. The existing patient-specific optimal face prediction for soft-tissue-
driven planning struggles to accurately capture fine facial details and
maintain harmonious alignment among key facial features. In this pa-
per, we propose a novel Conditional Autoregressive Modeling for Orthog-
nathic Surgery (CAMOS) framework that directly predicts patients’ opti-
mal 3D face from their preoperative appearance. Our approach employs a
hierarchical, coarse-to-fine next-scale prediction strategy, beginning with
large-scale pretraining on 44,602 control faces to construct a robust gen-
erative model that captures diverse demographic features. Subsequently,
the model is fine-tuned on an in-house dataset of 86 orthognathic surgery
patients, establishing a conditional path that integrates patient-specific
information to form a conditional generative model. Evaluation on both
public and in-house datasets demonstrates that CAMOS successfully
generates patient-specific optimal face with high quality, effectively ad-
dressing the limitations of prior single-step approaches. Source code is
available at https://github.com/RPIDIAL/CAMOS.

Keywords: Orthognathic Surgery - Visual AutoRegressive Modeling
- Facial Landmarks - Conditional Generation

1 Introduction

Craniomaxillofacial (CMF) deformities involve congenital and acquired abnor-
malities affecting the skull, face, and jaw, often requiring orthognathic surgery
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Fig. 1. Application of CAMOS to predict a patient-specific optimal 3D face from a
given preoperaitve 3D face with deformity.

to reposition bones and improve functional and aesthetic outcomes [6, 16, 18].
Traditional planning workflows rely on bone-driven simulations, where experts
determine bone movements and computational models predict the resultant soft
tissue changes [1,3,5,8,13]. When the predicted face is unsatisfactory, surgeons
must iteratively adjust the bone plan, which can be time-consuming. In response,
researchers have explored soft-tissue-driven approaches that directly estimate
the patient’s optimal face without requiring explicit bone planning, avoiding re-
peated bone-planning adjustments. However, most existing work is limited to
2D lateral-view predictions [7] or using only a sparse set of anatomical land-
marks [11], thereby failing to capture the full 3D facial information.

In this paper, we introduce an innovative approach of Conditional Autore-
gressive Modeling for Orthognathic Surgery (CAMOS), designed to predict a
patient’s optimal 3D face directly from their preoperative deformed face. Other
existing methods, such as [10,11], can yield unrealistic results when predicting
fine facial details (e.g., the lips). In addition, those methods often fail to achieve
a harmonious alignment among the lips, jaw, and overall facial structure. The
root of the challenge lies in the inherent nature of patient-specific optimal face
prediction, which requires both a thorough understanding of the preoperative
face and the generation of a normal-looking face. When humans perceive or
imagine a face, we tend to first grasp its overall structure and then refine the
finer details [4]. However, existing methods predominantly rely on a single-step
prediction, overlooking this natural hierarchical progression. To overcome this
limitation, we propose a hierarchical multi-scale prediction strategy. By decom-
posing facial features into a coarse-to-fine hierarchy, we first capture the global
structure and then progressively refine local details. This stepwise, multi-scale
process mirrors the natural human perceptual process and ensures that each
level of facial detail is accurately aligned and realistically generated.

To implement this framework, we adapted the state-of-the-art Visual Au-
toRegressive modeling (VAR) [19] from image generation to develop CAMOS,
which progressively predicts a normal-looking face from facial landmarks of a pre-
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operative deformed face as conditional input. However, directly training CAMOS
requires a large amount of data with facial deformities, which is infeasible to ob-
tain due to patient privacy concerns. To overcome this roadblock, our second
key contribution lies in curating a large-scale dataset of 44,602 control subjects
to represent a diverse range of normal-looking facial appearances to pretrain
the model. With pretraining on this large-scale dataset followed by finetuning
on a paired pre- and post-operative facial appearance dataset collected from 86
patients, we successfully trained the proposed CAMOS. Its clinical application
for generating optimal face is illustrated in Figure 1.

For training, we first trained a multi-scale Vector Quantized Variational Au-
toencoder (VQ-VAE) [20] to extract latent features for each facial landmark and
subsequently froze it to train a VAR generative model through next-scale token
prediction. Finally, using our in-house paired pre- and post-operative dataset, we
finetuned the conditional path of the generative model for patient-specific opti-
mal facial appearance prediction. While our ultimate vision involves integrating
surgical constraints to ensure the surgical feasibility of predictions, this study
explicitly focuses on modeling facial outcomes as an independent yet informative
step that can potentially support downstream surgical planning.

We first evaluated the pretraining performance of the CAMOS framework
on public datasets and observed strong performance across multiple point-cloud
generative metrics, indicating both high fidelity and diversity of the generated
faces. We then evaluated CAMOS on a cohort of 86 orthognathic surgery pa-
tients, achieving superior performance in surface distance compared to other
methods, particularly in the lips and jaw regions that are critical in orthog-
nathic surgery. Moreover, qualitative evaluation confirmed that our approach
generates realistic optimal faces, preserving patient-specific features while cor-
recting preoperative deformations.

2 Datasets and Data Processing

Our study leverages both publicly available datasets and in-house patient data.
The public datasets consist of 44,602 surface meshes captured using a variety
of 3D scanning devices. These data were acquired from four publicly avail-
able sources, including DAD-3DHeads (N=42,152) [14], Headspace (N=1,507)
[2], FaceScape (N=843) [26], and BU-3DFE (N=100) [27]. In addition, we col-
lected our own data from 86 orthognathic surgery patients (IRB:MOD00005116).
Among these, 42 cases were obtained from computed tomography (CT) scans.
For these CT scans, soft tissue segmentation was performed, followed by ap-
plication of the marching cubes algorithm and ambient occlusion techniques
to reconstruct facial surface meshes. The remaining 44 cases in our in-house
dataset were acquired using 3D stereophotogrammetry cameras, directly provid-
ing surface meshes. To focus on information related to orthognathic surgery, we
extracted 282 evenly distributed dense landmarks on the facial surface meshes.
Specifically, we rendered multiple 2D views of each 3D face from different angles
and applied MediaPipe’s face landmark detection model [12] to these 2D im-
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Fig. 2. Detailed architectures of networks within CAMOS. (a) MQ (Multi-scale Quan-
tization) for extracting discrete tokens at multiple scales; (b) VAR network for predict-
ing next-scale tokens; (c¢) Finetuning with conditional path.

ages. We then back-projected the detected landmarks onto the 3D surface using
known camera parameters and ray casting [24]. By averaging the back-projected
results from all views, we obtained robust and consistent 3D landmarks. We
excluded landmarks around the eyes, eyebrows, and nostrils to eliminate irrele-
vant or noisy regions, focusing on the parts of the face most critical for surgical
planning.

3 Pretraining of CAMOS

3.1 Multi-Scale Residual Token Extraction

In the hierarchical next-scale prediction approach using VAR, which involves
autoregressive prediction of tokens from coarse to fine scales, multi-scale discrete
tokenization is required to convert continuous facial landmark coordinates into
a hierarchical set of discrete tokens. To achieve this, we train a multi-scale VQ-
VAE model comprising an encoder &, a decoder D, and a multi-scale quantization
module M Q. Both £ and D are transformers [21] in this work. The encoder & first
embeds each landmark’s coordinate (z, y, z) into a single token and then encodes
them into d-dimensional latent feature vectors z. The decoder D reconstructs
the original coordinates from z. Figure 2-a shows the details of the multi-
scale quantization module M Q. We quantize 282 facial landmarks at N scales,
following a quadratic progression to ensure a smooth and gradual refinement of
the facial representation from a sparse set of landmarks at the coarsest scale to
the finest scale. Let [,, denote the number of landmarks at the nth scale, where
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n=12..,N. We have L, = I + (282 — I) (=07 (with i = 1). We then
apply residual tokenization [9] across these scales, sharing a single codebook
at each level to facilitate hierarchical next-scale prediction. Concretely, we first
downsample the latent feature vectors z to the lowest scale [; using the farthest
point sampling approach in PointNet [17]. The vectors are then mapped to the
nearest code vector in a codebook via a vector quantization layer. We then
upsample this quantized feature back to the full scale and calculate the residual
vector. The resulting residual is passed on to the next scale. This process is
repeated until the full scale is reached, yielding residual tokens at each scale.
These multi-scale tokens are then used by the subsequent generative model. The
upsampled full-scale features obtained at each scale are summed and passed to
D for reconstruction.
The overall training objective £ of our proposed multi-scale VQ-VAE is:

1 Y 1 &
L=|z—&5+ ~ > " lisglSi(@)] — zqll3 +8% > lisglzg = Si(@)ll5, (1)
i=1 i=1

where & = D(MQ(E(x))) is the reconstructed output, and S;(x) is the residual
quantized token at the i-th scale and z, is the codebook vector closest to S;(z).
B is a weighting coefficient, and sg[-] indicates the stop-gradient operation.

3.2 Next-Scale Token Prediction

Next, we utilize the multi-scale discrete tokens obtained earlier to progressively
predict facial landmarks from sparse to dense, thereby generating high-quality,
realistic faces. This hierarchical next-scale prediction is implemented using a
VAR as shown in Figure 2b. To reflect diverse demographics, we employed a
large-scale public dataset of control subjects for pretraining. Since these datasets
contain only a single neutral face per subject and are not related to orthognathic
surgery, we used them to pretrain an unconditional generative model. Given
tokens at one scale, the model autoregressively predicts tokens at the next finer
scale, similar to GPT-style language modeling except that the tokens at one scale
are predicted in a batch as in VAR [19]. Concretely, each multi-scale discrete
token is first mapped to its corresponding vector from the pretrained VQ-VAE
codebook V', then passed through an upsampling layer to match the number of
next-scale tokens, and finally fed into a transformer. The output of transformer
is then passed through a softmax layer to produce a probability distribution,
and the transformer is trained with cross-entropy loss between this probability
distribution and the ground-truth next-scale discrete tokens.

4 Finetuning CAMOS for Conditional Generation

Finally, we incorporate preoperative information to generate patient-specific op-
timal faces as shown in Figure 2c. To accomplish this, we finetune previously
pretrained generative model, ensuring that the knowledge gained from a large
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and diverse demographic population remains intact. Specifically, we divide the
model into two paths: a generative path and a conditional path. The gener-
ative path preserves the ability to produce high-quality, normal-looking faces
learned from the large-scale public dataset, whereas the conditional path injects
patient-specific information from the preoperative face. To leverage the high-
quality generation learned during pretraining, we freeze the generative path.
We initialize the transformer blocks in the conditional path with the same pre-
trained weights from VAR, but allow them to be updated during finetuning. In-
spired by ControlNet [28], we fuse the outputs of the corresponding Transformer
blocks from the generative and the conditional path by adding tokens of the
same scale and landmark location. Additionally, we insert a zero-initialized linear
layer before the fusion step to gradually inject conditional information. During
finetuning, we employ autoregressive modeling conditioned on the preoperative
tokens to guide the generation process. The generation process is expressed as:
p(x1,29,...,2N) = Hszlp(xn | {ei}Nq, 21, m0,. .. ,xn,l), where x,,¢, € [V]
are tokens at the n-th scale of postoperative and preoperative landmarks, re-
spectively. Each token in x,, and ¢, is an index from the VQ-VAE codebook V,
which was trained and shared across all scales.

Surface Reconstruction from Facial Dense Landmark In clinical settings,
a full 3D facial surface is required rather than a set of landmarks even though
they are dense. Therefore, after finetuning the network, we first predict the
patient-specific optimal facial landmarks from the patient’s preoperative land-
marks. We then apply Thin-Plate Spline (TPS) interpolation between the pre-
operative and predicted landmarks to generate a deformation field, which is
applied to the preoperative facial surface. This process yields a complete 3D
facial surface for surgical planning and visualization.

5 Experiments and Results

5.1 Evaluation Metrics

We evaluated our pretrained model on a large-scale dataset of control subjects us-
ing four point-cloud generative model metrics, including Minimum Matching Dis-
tance (MMD), Coverage score (COV), 1-Nearest Neighbor Accuracy (1-NNA),
and Jensen-Shannon Divergence (JSD). MMD measures average proximity to
real samples, COV and 1-NNA quantify coverage and distributional similarity,
and JSD evaluates overlap of marginal distributions [25]. In addition, we also
assessed our finetuned model on in-house patient data. For the quantitative eval-
uation, we measured the Chamfer Distance (CD) and Hausdorff Distance (HD)
between the predicted and the actual postoperative facial surface. For more de-
tailed analysis, we divided the face into four regions relevant to orthognathic
surgery (nose, lips, cheeks, and chin) and calculated these metrics for each re-
gion separately. To assess the statistical significance of the observed differences,
we performed a Wilcoxon signed-rank test [22]. For the qualitative assessment,
we randomly selected one patient from three jaw deformity type (asymmetry,
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Table 1. Performance of the facial landmarks generative models pretrained with large-
scale dataset. 1/]: higher/lower is better. Best results are in bold.

MMD (}) COV () 1-NN(}) JSDx107* ()

DiT (Diffusion) [15] 0.3252 0.3818 0.6624 1.0063
CAMOS (VAR) 0.3351 0.4612 0.6412 0.6360

Table 2. Comparison of surface distance between different prediction methods. Best
results are in bold; asterisks indicate p-values (<0.05) compared to the best result.

Chamfer Distance (mm) Hausdorff Distance (mm)
Nose Lips Cheeks Chin Nose Lips Cheeks Chin
SR [23] 2.52 £ 1.16% 4.31 £2.10% 3.49 £ 0.97* 5.58 & 2.72* 4.76 & 2.30* 6.74 & 2.62* 6.97 £ 2.40* 8.62 + 3.72*

AnaLand [11] 1.75 £ 0.51* 2.24 + 0.78% 2.63 & 0.54* 3.66 & 1.53* 3.29 £ 1.12* 4.03 + 1.33% 4.74 + 1.52% 6.32 £ 2.39*
PCNet [10]  1.53 +0.38 2.17 + 0.75% 2.59 & 0.62* 3.06 & 1.20* 2.71 +0.80 3.91 + 1.36* 4.65 & 1.35% 5.38 £ 2.19*

CAMOS 1.47+0.291.91 £0.55 2.324+0.33 2.37£0.74 2.57 £ 0.57 3.29 +1.06 4.03 £ 0.83 3.76 + 1.12

retruded, and protruded) for visualization and compared the facial surfaces gen-
erated by each method.

5.2 Implementation Details and Results

For £ and D, we used a transformer with 12 layers, a hidden dimensional size d =
192, and 3 attention heads. The codebook size V' was set to 256. We empirically
determined the scale N=8 and the number of landmarks ({1, 7, 24, 53, 93, 144,
207, 282}) at each scale in VAR (see details below). During finetuning, we stacked
10 transformer blocks to form the conditional path. For better reproducibility,
we release our source code at https://github.com/RPIDIAL/CAMOS.
Generation Performance: As shown in Table 1, our hierarchical multi-scale
approach using VAR outperformed the large-scale pretrained facial landmarks
generative model. Compared to the diffusion-based DiT [15], which achieved a
lower MMD, our model demonstrated superior COV and 1-NNA scores. This
suggests that our coarse-to-fine hierarchical multi-scale approach captures di-
verse demographics more effectively, reinforcing our claim that coarse-to-fine
prediction enhances the realism and harmony of generated faces.

Face Prediction Performance: As shown in Table 2, when evaluating op-
timal face predictions on our in-house patient dataset, the fine-tuned CAMOS
model demonstrated superior performance, particularly in regions critical for or-
thognathic surgery, such as the lips and chin. Qualitative results in Figure 3
illustrates that CAMOS generates faces that are both high-quality and closely
resembles the postoperative outcome. In contrast, other methods either fail to
retain patient-specific details or produce faces with residual deformity along with
low surface quality. These results confirm that even after finetuning, CAMOS
can maintain high quality generation and effectively preserve patient informa-
tion through hierarchical multi-scale prediction. The color-coded surface distance
maps further highlight the superior performance of CAMOS.
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Scale as a hyperparameter: We also conducted experiments to analyze the
impact of key hyperparameters on multi-scale prediction. As shown in Table 3,
our experiments showed that a codebook size of 256 outperformed the settings
of 128 and 512. Similarily, dividing the landmarks into 8 scales produced better
results than using 6 or 10 scales. The codebook size represents the number of
discrete class labels and the number of scales corresponds to the number of
prediction steps. Although increasing these values can capture a broader range
of features, an excessive number may make the model overly complex.

6 Conclusions

This paper presents the CAMOS framework for patient-specific optimal face pre-
diction in orthognathic surgery. By adopting a hierarchical, coarse-to-fine pre-
diction with large-scale pretraining, CAMOS overcomes previous limitations in
capturing fine facial details and overall harmony. Evaluations on both large-scale
public dataset and an in-house clinical cohort showed that CAMOS consistently
achieves superior generative performance while delivering accurate postoperative
predictions. While this study focuses exclusively on predicting patients’ optimal
facial outcomes, the results can inform subsequent stages of surgical planning,
including 1) the estimation of required bone movements and 2) the assessment
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Table 3. Ablation study on the impact of the codebook size and scale number. Best
results are in bold; asterisks indicate p-values (<0.05) compared to the best result.

Number of Parameters Chamfer Distance (mm)

Codebook Scale Nose Lips Cheeks Chin Lower Face
256 6 1.48+0.26 1.87+0.48 2.364+0.37 2.47+1.13 2.1240.36
128 8 1.56+0.32 2.0240.72* 2.4740.55 2.754+1.08* 2.254+0.51%*
256 8 1.5240.33 1.82+0.54 2.324+0.39 2.30+0.78 2.07+0.33
512 8 1.46+0.29 1.87+0.44 2.414+0.53 2.854+1.22* 2.194+0.43*
256 10 1.52+0.38 1.91+0.63 2.4040.51 2.7141.12* 2.18+0.47*

of surgical feasibility. A complete soft-tissue-driven workflow would additionally
involve simulating the postoperative result based on those predicted skeletal
adjustments. One limitation of this work is the absence of formal clinical valida-
tion; future research will include expert evaluation to assess the practical util-
ity and surgical relevance of the generated outcomes. Taken together, CAMOS
establishes a foundation for facial outcome-guided orthognathic planning with
potential to support more efficient and patient-specific surgical decision-making.
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