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Abstract. Lesion segmentation in breast ultrasound videos plays a cru-
cial role in the early detection and intervention of breast cancer. However,
it remains a challenging task due to blurred lesion boundaries, substantial
background noise, and significant scale variations of lesions across frames.
Existing methods typically rely on selecting preceding frames for rudi-
mentary temporal integration but fail to achieve satisfactory segmenta-
tion performance. In this paper, we propose STMFSAM, a novel Spatio-
Temporal Memory Filtering SAM network, designed to leverage the pow-
erful feature representation and modeling capabilities of SAM for lesion
segmentation in breast ultrasound videos. Specifically, we introduce a
memory mechanism that stores and propagates essential spatio-temporal
features across frames. To enhance segmentation accuracy, we select three
relevant reference frames from the memory bank as dense prompts for
SAM, enabling it to retain long-term contextual information and effec-
tively guide the segmentation of subsequent frames. To further mitigate
the impact of background noise, we present the Spatio-Temporal Memory
Filtering module, which selectively refines the memory content by filter-
ing out irrelevant or noisy information. This ensures that only meaningful
and informative features are retained for segmentation. We conduct ex-
tensive experiments on the UVBSL200 breast ultrasound video dataset,
demonstrating that STMFSAM outperforms existing methods. Addition-
ally, to highlight our model’s generalization capability, we achieve com-
petitive results on two video polyp segmentation datasets. The code is
available at https://github.com/tzz-ahu/STMFSAM.
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1 Introduction

Breast cancer stands as the most prevalent cancer in females worldwide, with
recent statistics indicating that one in every eight newly diagnosed cancer cases
is attributed to breast cancer [1]. Given its complex etiology and individual vari-
ability, early screening is crucial for timely intervention. Due to noninvasive,
cost-effective, and real-time, ultrasound imaging has become the most widely
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used method in breast cancer screening [22]. However, ultrasound image inter-
pretation relies heavily on clinician expertise, leading to significant variability
in assessment results, even by the same operator at different times [21]. This
raises concerns about diagnostic consistency and accuracy. To alleviate clinicians’
workload and enhance diagnostic precision, automated segmentation techniques
are employed to provide lesion morphology information. These techniques as-
sist physicians in evaluating benignity, malignancy, aggressiveness, and staging.
Hence, lesion segmentation in breast ultrasound videos has notable clinical value
and broad application potential.

Existing video-based methods [6,11] focus mainly on short-term temporal in-
formation between adjacent frames. For example, FLA-Net [6] uses a contrastive
loss to reduce discrepancies in lesion locations, while TMFF [11] relies on previ-
ous frame segmentation results as prior information for stability. However, these
methods struggle to capture temporal evolution, especially in tracking lesion
shape changes and contours. Additionally, they fail to obtain global information
because of the CNN backbones’ limited receptive field, making it hard to dis-
tinguish background noise from foreground targets, which impacts segmentation
accuracy.

To cope with these issues, we propose STMFSAM, a novel Spatio-Temporal
Memory Filtering framework for lesion segmentation in breast ultrasound videos.
Given SAM’s [12] ability to learn discriminative features and model global con-
text, we employ SAM as the backbone of our network. To handle lesion shape
variations and blurred contours in ultrasound videos, we introduce a mem-
ory mechanism to store and propagate critical spatio-temporal features across
frames. From this memory bank, we select three reference frames—the first frame
of the video, the previous frame and the most similar memory frame to the
current one—to provide spatial and positional context. These frames serve as
dense prompts, allowing SAM to retain long-term context and guide segmenta-
tion in subsequent frames. Additionally, we develop a Spatio-Temporal Memory
Filtering module to optimize the memory bank content, removing irrelevant
features and preserving the most useful information for accurate segmentation.
This filtering improves segmentation accuracy and suppresses background noise.
We assess the performance of STMFSAM on the UVBSL200 breast ultrasound
dataset [11], achieving state-of-the-art results compared to existing methods and
showcasing robust generalization on two video polyp segmentation datasets. Our
key contributions are as follows:

(1)We introduce a novel breast ultrasound video segmentation model incorpo-
rating SAM, which improves segmentation accuracy by utilizing spatio-temporal
information from the memory bank.

(2)We design a spatio-temporal memory filtering module to enhance memory
features, reducing redundant information and noise.

(3)We validate our approach on a large-scale breast ultrasound dataset,
achieving outstanding performance and demonstrating strong generalization ca-
pabilities in video polyp segmentation tasks.
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Fig. 1. Overview of STMFSAM, which consists of SAM, Memory Mechanism, and
Spatial-Temporal Memory Filtering Module.

2 Method

Overview. The structure of our proposed Spatio-Temporal Memory Filtering
SAM (STMFSAM) is illustrated in Figure 1. It comprises three main compo-
nents: the SAM, memory mechanism, and filtering module. The SAM encoder
transforms the input image into embeddings, while the prompt encoder encodes
foreground points as sparse prompts. The memory mechanism includes two key
operations: storing and reading. For storage, image embeddings are projected
into memory space as keys, while frames and their corresponding masks are
encoded into memory values by a value encoder. During memory reading, we
compute the current frame and stored frames’ affinity, and the most relevant
memory values are selected as reference features. These features are then pro-
cessed by the filtering module to reduce background noise and redundant in-
formation, providing refined dense prompts to the SAM decoder. The decoder
integrates all the prompts and features to predict the final masks.

2.1 Memory Mechanism

The memory mechanism, as shown in Figure 1, perform the storage of memory
keys and values and their retrieval on readout, a process that occurs in real time
as each frame is processed.

Memory storing. The inputs of our method are t video frames F1, F2, ..., Ft ∈
RC×H×W and groundtruth mask G1 ∈ RC×H×W corresponding to F1, where C,
H and W are the channel, height and width of video frames or the groundtruth
masks and t denotes the index of the frame in the sequence. This follows a com-
mon paradigm in semi-supervised video object segmentation, where the initial
frame’s annotation is provided to initialize and guide the segmentation process
for the entire sequence. For each frame Fi, after being processed by the SAM
encoder Es, an image embedding Ii is generated. This embedding is then pro-
jected into the memory space through a projection layer, forming the memory
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key Ki ∈ RCk×H×W . When groundtruth (with the first frame) or the final pre-
dicted mask is available, the current frame Fi and the mask Pi (where P1 = G1

for i = 1) are encoded by using a dedicated value encoder Ev into the memory
value Vi ∈ RCv×H×W . Here, Ck and Cv denotes the dimension of key and value
in memory space, respectively. The process can be formulated as:

Ki = Proj(Es(Fi)) (1)

Vi = Ev(Fi, Pi), (i = 1, P1 = G1) (2)

where 1 ≤ i ≤ t. The keys and values are concatenated along a specific dimension
in the memory bank, and then we can search for the matching memory values
based on the indices of the memory keys.This design ensures that the memory
bank not only stores the spatial features of individual frames but also captures
the temporal dynamics by linking the information across consecutive frames.

Memory Reading. The memory reading operation depicted in Figure 1
elucidates the process of retrieving spatio-temporal information from the mem-
ory bank to assist in generating the segmentation result for the current frame.
Specifically, following the memory storage phase, our model maintains a memory
bank that stores key-value pairs from previous frames. Our objective is to obtain
the readout features Ri ∈ RCv×H×W , which are derived from the memory values
and affinity matrices, to be utilized as dense prompts.

Depending on the varying number of stored memory frames within the mem-
ory bank, distinct memory retrieval methods are employed. In scenarios where
the number of memory frames is less than or equal to three, we directly use all
memory frames in the memory bank as reference frames. Conversely, when the
number of memory frames exceeds three, we utilize three memory frames: (1)
the first frame I1, which contains the ground truth mask, (2) the most recent
frame Ii−1, and (3) a memory frame Im selected based on the highest similarity
between the current frame Ii and any prior frame I2, I3, ..., Ii−2. For the sake
of clarity, we assume that the current frame query is denoted as Qi, the refer-
ence memory key as Ki−1, and the reference memory value as Vi−1. The overall
process can be formulated as:

A(Ki−1, Qi) = softmax(S(Ki−1, Qi)) (3)

Ri = Vi−1 ·A(Ki−1, Qi) (4)

where S denotes the anisotropic L2 similarity [4] function. This multi-faceted ap-
proach ensures that the segmentation process leverages both temporal continuity
(recent frames) and long-term information (ground truth and similar frames),
improving the accuracy of segmentation across different frames.

2.2 Spatial-Temporal Memory Filtering

Ultrasound images, with their inherent complex noise, can lead to noisy feature
representations encoded by the encoder. If directly used for segmentation, these
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Fig. 2. Details of STMF Module, which leverages downsampling, spatial attention, and
channel attention mechanism to filter and refine the features read from the memory
bank.

representations may result in poor foreground-background separation. To miti-
gate this, we propose a Spatio-Temporal Memory Filtering (STMF) module that
enhances target localization and suppresses background noise.

First, the image embedding Ii and the readout feature Ri are concatenated
along the channel dimension to form the input Fin, combining spatial information
with high-level semantic features. This integration allows the module to exploit
both low- and high-level features, essential for distinguishing foreground from
noise. Downsampling is then applied to reduce the spatial dimensions, which
simplifies subsequent processing. Next, spatial attention is applied to emphasize
regions containing the foreground target while suppressing background noise:

Fs = σ(f([AvgP (Fin);MaxP (Fin)])) (5)

where σ is the sigmoid activation function, f represents a convolution, and [; ]
denotes concatenation of average pooling AvgP and max pooling MaxP results
along the channel axis. Channel attention further refines feature representations
by amplifying relevant channels:

Fc = σ(MLP (AvgP (Fs)) +MLP (MaxP (Fs))) (6)

This operation reduces noise by prioritizing informative channels and diminish-
ing less relevant ones. A second downsampling step ensures that only the most
salient features remain, minimizing noise impact and producing compact mem-
ory embeddings. Residual connections are incorporated throughout to support
information and gradient flow, enhancing model robustness.

3 Experiment

Implementation Details. For the UVBLS200 dataset, we adhere to the offi-
cial data split of 180 videos for training and 20 for testing. All experiments were
conducted using a fixed random seed to ensure reproducibility. The SAM and
prompt encoders are initialized using weights pre-trained on ImageNet, whereas
the remaining components are trained from scratch. Video frames are resized to
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Table 1. Segmentation performance comparison between the proposed method and
state-of-the-art approaches on the UVBLS200 dataset.

Input Method Year Dice ↑ IoU ↑ Recall ↑ MAE ↓

Image

UNet++ [13] 2018 0.723 0.576 0.664 0.054
HarDNet [14] 2019 0.823 0.727 0.823 0.035
MSNet [15] 2021 0.800 0.700 0.769 0.041

TRUNet [16] 2022 0.819 0.724 0.828 0.038
UCTNet [17] 2022 0.825 0.721 0.846 0.037

SAM [12] 2023 0.631 0.514 0.683 0.179
SAMUS [18] 2023 0.838 0.755 0.872 0.044

Video

STM [19] 2019 0.821 0.729 0.857 0.039
AFB-URR [20] 2020 0.811 0.713 0.794 0.037

STCN [3] 2021 0.834 0.742 0.845 0.033
DCFNet [23] 2021 0.804 0.707 0.794 0.035
XMem [4] 2022 0.851 0.762 0.861 0.026
UFO [24] 2023 0.789 0.680 0.813 0.040

TMFF [11] 2024 0.841 0.752 0.888 0.035
Ours 2024 0.872 0.787 0.897 0.022

256x256 and undergo data augmentation techniques such as random cropping,
flipping, and affine transformations. The model is built using PyTorch and op-
timized with AdamW [25], employing a learning rate of 1e-5, weight decay of
0.05, and a linear warmup phase spanning 250 iterations, followed by step-wise
decay. To enhance training efficiency and minimize memory consumption, auto-
matic mixed precision (AMP) is utilized. The memory key and value dimensions
are configured to 64 and 512, respectively, with a memory bank capacity of 8.
ResNet18 is used for value encoding. We set batch size to 1 and use a single
NVIDIA RTX 3090 GPU to conduct the training process. We acknowledge that
the introduction of the memory mechanism and the STMF module adds a mod-
erate computational overhead to the baseline SAM architecture. However, we
posit that this trade-off is justified by the substantial gains in segmentation ac-
curacy and robustness, which are critical for addressing the inherent challenges
of ultrasound video analysis.

3.1 Comparisons with State-of-the-arts

To validate the effectiveness of our approach, we conducted a quantitative com-
parison with several state-of-the-art (SOTA) methods on the UVBLS200 dataset.
These methods include seven image-based methods: UNet++ [13], HarDNet [14],
MSNet [15], TRUNet [16], UCTNet [17], SAM [12], SAMUS [18], and seven
video-based methods: STM [19], AFB [20], STCN [3], DCF-Net [23], ,XMem [4],
UFO [24], TMFF [11]. To ensure a balanced and impartial comparison, we ob-
tain the segmentation results of the fifteen approaches either by utilizing their
publicly accessible implementations or by developing our own versions.

Quantitative Comparisons. Table 1 presents a performance comparison
between our model and other existing methods. SAM struggles to learn effective
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GT Ours TMFF UFO Xmem DCF STCN AFB STMFrame

Fig. 3. Visual comparison with state-of-the-art methods on the UVBLS200 test set.
The leftmost column represents the original frames, with the most challenging aspects
of lesion segmentation highlighted by red boxes. In the remaining columns, the red
regions overlaid in each image represent the groundtruth or prediction of the breast
lesion.

medical feature representations due to data scale limitations, leading to subop-
timal segmentation results. SAMUS, designed for ultrasound images, performs
better but is still outperformed by our model across all evaluation metrics. No-
tably, for video sequences, our method achieves a 3.1% and 3.5% improvement in
Dice and IoU scores, respectively, compared to the benchmark method TMFF.
This highlights our model’s ability to effectively capture spatio-temporal in-
formation and remain robust against motion artifacts and noise in ultrasound
imaging. The improvements are attributed to the spatio-temporal information
fusion and filtering module integrated into our model.

Qualitative Comparisons. Figure 3 provides a visual comparison of seg-
mentation outcomes generated by our model and leading state-of-the-art ap-
proaches. Our method demonstrates superior accuracy in segmenting breast le-
sions, effectively handling challenges such as varying lesion sizes, irregular shapes,
and inconsistent intensity across frames. In contrast, other methods often over-
segment or under-segment boundaries, particularly in cases of blurred edges and
high background noise typical of ultrasound images.

3.2 Ablation Study

We performed ablation experiments to assess the impact of our model’s key com-
ponents: the Spatio-Temporal Memory Filtering Module (STMF), point-based
prompting, and the Reference Frame Selection Algorithm (RFSA). The results
are presented in Table 2. First, removing the STMF module resulted in a consis-
tent performance drop across all metrics. While the quantitative decrease in Dice
and IoU is modest, this finding is consistent with the module’s designated func-
tion: to refine retrieved memory features by suppressing background noise and
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Table 2. Ablation analysis of STMFSAM’s components on the UVBLS200 dataset.

Setting Dice ↑ IoU ↑ Recall ↑ MAE ↓
full model 0.872 0.787 0.897 0.022
w/o STMF 0.866 0.778 0.884 0.023

w/o point prompt 0.863 0.774 0.879 0.025
w/o RFSA 0.856 0.748 0.864 0.033

irrelevant information. This filtering process is crucial for achieving stable and
qualitatively superior segmentations, especially in frames with high noise levels,
even if its impact on aggregate metrics is not drastic. Second, eliminating point-
based prompting caused a slight but noticeable performance decline, confirming
the value of providing explicit spatial guidance to the SAM decoder. Finally,
replacing our RFSA with a random frame selection strategy led to a substan-
tial performance deterioration. This clearly underscores the effectiveness of our
selection strategy—leveraging the first, previous, and most similar frames—in
capturing critical spatio-temporal dependencies for accurate video segmentation.

3.3 Generalization Capability

To assess the generalization capability of our STMFSAM, we extended its evalu-
ation to the task of video polyp segmentation (VPS). Adhering to the experimen-
tal framework described in a recent study on video polyp segmentation [5], we
retrained our network and evaluated its performance on two benchmark datasets:
CVC-300-TV and CVC-612-V. The quantitative results, compared against state-
of-the-art methods, are presented in Table 3. We employed several evaluation
metrics, including Dice coefficient (Dice), Enhanced-alignment measure (Eϕ) [27]
, Intersection over Union (IoU), Mean Absolute Error (MAE) and S-measure
(Sα) [26]. Our approach consistently surpasses existing methods across all met-
rics, clearly demonstrating its superior capability in accurately segmenting polyp
regions.

Table 3. Performance evaluation results across two video polyp segmentation datasets.

Metrics ACSNet [2] PraNet [9] PNSNet [5] FLA-Net [6] STCN [3] XMem [4] Ours

C
V

C
-3

00
-T

V Dice ↑ 0.738 0.739 0.840 0.874 0.867 0.893 0.911
IoU ↑ 0.632 0.645 0.745 0.789 0.784 0.826 0.842
Sα ↑ 0.837 0.833 0.909 0.907 0.896 0.915 0.947
Eϕ ↑ 0.871 0.852 0.921 0.969 0.962 0.967 0.981

MAE ↓ 0.016 0.016 0.013 0.010 0.014 0.009 0.005

C
V

C
-6

12
-V Dice ↑ 0.804 0.869 0.873 0.885 0.876 0.889 0.905

IoU ↑ 0.712 0.799 0.800 0.814 0.811 0.818 0.846
Sα ↑ 0.847 0.915 0.923 0.920 0.917 0.927 0.938
Eϕ ↑ 0.887 0.936 0.944 0.963 0.942 0.956 0.979

MAE ↓ 0.054 0.013 0.012 0.012 0.013 0.010 0.007
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4 Conclusion

In this work, we enhance the Segment Anything Model by incorporating a mem-
ory mechanism design, enabling SAM to effectively leverage temporal informa-
tion from video sequences. This modification extends SAM’s applicability to
lesion segmentation in breast ultrasound videos. Furthermore, to address the dis-
tinct challenges of ultrasonic imaging, we introduce a Spatio-Temporal Memory
Filtering module aimed at reducing the impact of noise on the model’s learning
process. Extensive experiments on the UVBLS200 and VPS datasets demon-
strate that our methodology not only achieves state-of-the-art performance, but
also exhibits commendable generalizability. Looking ahead, we intend to fur-
ther investigate the potential of the SAM model in the realm of medical video
segmentation to address the demands of clinical applications.
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