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Abstract. Magnetic resonance imaging (MRI) is an invaluable tool for
clinical and research applications. Yet, variations in scanners and acquisi-
tion parameters cause inconsistencies in image contrast, hindering data
comparability and reproducibility across datasets and clinical studies.
Existing scanner harmonization methods, designed to address this chal-
lenge face limitations, such as requiring traveling subjects or struggling
to generalize to unseen domains. We propose a novel approach using
a conditioned diffusion autoencoder with a contrastive loss and domain-
agnostic contrast augmentation to harmonize MR images across scanners
while preserving subject-specific anatomy. Our method enables brain
MRI synthesis from a single reference image. It outperforms baseline
techniques, achieving a +7% PSNR improvement on a traveling subjects
dataset and +18% improvement on age regression in unseen scanners.
Our model provides robust, effective harmonization of brain MRIs to tar-
get scanners without requiring fine-tuning. This advancement promises
to enhance comparability, reproducibility, and generalizability in multi-
site and longitudinal clinical studies, ultimately contributing to improved
healthcare outcomes. 1

Keywords: Scanner Harmonization · Domain Generalization · Disen-
tanglement · Contrastive Learning.

1 The code is publicly available at: https://github.com/daniel-scholz/cacd.

https://github.com/daniel-scholz/cacd
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1 Introduction

Magnetic resonance imaging (MRI) is a versatile technique for brain studies,
offering multiple tissue contrasts in a single session and enabling non-invasive
insights into the brain’s structure and function. However, its flexibility leads to
a lack of standardization across imaging studies. Variations in pulse sequences,
acquisition parameters, and scanner hardware can cause undesired contrast vari-
ations, particularly in multi-site and longitudinal studies [15,9]. These variations
create a domain shift problem, introducing underlying bias into the models and
limiting the generalizability of quantitative analyses. Addressing these challenges
is crucial for advancing multi-center MRI research and improving diagnostic re-
liability across healthcare settings.

By using traveling subjects, i.e., scans of the same subject in different scan-
ners serving as ground truth, harmonization can be achieved by learning direct
mappings between scanners [4,24]. However, traveling subjects require significant
effort and hence occur only seldom in clinical reality, limiting the application of
such methods to a narrow context. Many methods alleviate the necessity for
traveling subjects through inter-domain cycle consistency [18,26]. These meth-
ods can usually translate between only two scanners by their pair-wise design,
thus lacking the generalizability to harmonize multiple sources into a common
space. Furthermore, the absence of anatomical constraints can lead to unrealistic
transformations or even hallucinations.

Recent methods [28,2] tackle scanner harmonization by disentangling con-
trast from anatomy, i.e., keeping subject-specific anatomical aspects consistent
while learning contrast changes that originate from scanners to generalize to
more than two domains. To this end, Zuo et al. [28] rely on paired MRI se-
quences, such as T1w, T2w, and FLAIR, of the same subject, which are more
common in clinical practice, to learn anatomical consistency. Models that can
achieve disentanglement from only a single sequence also exist [2]. However, due
to the lack of domain generalization, these models are limited to synthesizing
images similar to their training domain. In particular, introducing new domains
unseen during training often fails but is a clinical reality.

In our work, we develop an anatomy-consistent approach that harmonizes
between an arbitrary number of unseen scanners outside the training domain.
Additionally, the proposed method overcomes the reliance on paired subjects or
multiple MRI sequences per subject. We summarize our contributions as follows:

1. We present a domain-general scanner harmonization algorithm capable of
harmonizing arbitrary unseen scanners in brain MRI by controlling
contrast and maintaining anatomy.

2. To this end, we introduce a novel anatomy-contrast-disentanglement
module, including an elegant loss formulation with contrastive losses and a
domain-agnostic contrast augmentation suite.

3. We advance MRI scanner harmonization in unseen scanners in terms
of traveling subjects harmonization and age regression.
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2 Related Works

Numerous methods have been proposed for MRI harmonization, which are dis-
cussed in detail in these two recent reviews [7,10], so that we focus on discussing
approaches most relevant to our work.

Learning-based Methods Many existing deep learning models for scanner har-
monization require traveling subjects [4,24]. Their reliance on full supervision,
i.e., datasets with images of the same patient from multiple sites, limits their
applicability drastically. In contrast, the unsupervised CycleGAN method [27]
uses a cycle consistency loss to learn mappings between two domains without
paired examples. While adaptations of CycleGAN have been explored for MRI
harmonization [18,26], this approach can naturally only handle two sites, and
anatomical consistency during harmonization is not ensured.

Latent-Space Disentanglement Representation disentanglement has been a sig-
nificant focus of the computer vision community, e.g. for style transfer [6,14] or
medical image segmentation [8,11]. Some works accomplish scanner harmoniza-
tion with disentangled latent spaces to maintain anatomical consistency while
learning intensity-level translation [2,28]. HACA3 [28] extract the anatomy em-
bedding through shape constraints from paired MRI sequences while the contrast
is learned as the remaining information. To overcome the need for paired MRI se-
quences, [2] introduce Gamma augmentations to create different contrasts while
[25,29] utilize energy- or mutual-information-based models. These approaches,
however, are limited to the contrast differences covered by Gamma augmenta-
tions, which do not account for the entire variation in real-world data, and relies
on patches for training. These limitations highlight the need for a framework
capable of processing full volumes while leveraging a more generalizable image
synthesis and latent-space disentanglement.

3 Method

3.1 Diffusion Autoencoder

The foundation of our work is the diffusion autoencoder (DiffAE) [19]. It consists
of a conditional DDIM [21] and a separate semantic encoder E(x) that projects
the input image x to a latent feature vector zsem, which is then used to condition
the DDIM. The diffusion autoencoder architecture allows control of the image
editing process by altering the semantic feature vector to contain the semantic
information desired in the edited image. However, the feature space needs to be
disentangled to make specific changes that leave other imaging features constant.

3.2 Disentanglement Module

In this work, we aim to disentangle anatomy and contrast to enable altering
intensity while maintaining the anatomy in the image (Figure 1). To this end,
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Fig. 1: Our novel anatomy-content-disentanglement module. Two images
from different subjects and arbitrary (possibly even the same) scanners x(0) and
x(1) are modified through two augmentations Aj(x) and Ai(x), yielding a view x̃
each. An anatomy-contrast disentanglement is learned through deliberate push-
ing and pulling (see contrastive loss, Eq. 1) of the anatomy za = ha(E(x̃)) and
contrast zc = hc(E(x̃)) embeddings (Section 3.2). Note that in this example,
push and pull are shown only for a single view - in practice, all views are consid-
ered. The resulting feature vectors za and zc are used to condition the DDIM to
synthesize x̃ by denoising the noise map xT to the input view denoted as x0=̂x̃.

we split the feature vector zsem ∈ Rd into two feature vectors za ∈ Rda and
zc ∈ Rdc for anatomy and contrast, respectively. To achieve this, we add two
separate network heads such that ha (E (x)) = za and hc (E (x)) = zc.

To disentangle the learned anatomical and contrast vectors, we introduce a
novel loss formulation based on a contrastive loss [3,13]. First, we sample a set
of Naugs contrast augmentations {Aj(x)}j∈{0,...,Naugs}, which model a variety of
intensities, but, crucially, preserve the anatomy (Section 3.3). We then apply
each augmentation to each image x(i) in a batch of images such that we end
up with augmented versions of the input images, termed views, x̃(i) that have
greatly varying contrasts but maintain the original anatomy of x(i). The total
number of views generated is B ·Naugs, where B is the original number of input
images. Finally, each augmented view Aj(x

(i)) is projected into an anatomy z
(i)
a

and contrast vector z
(i)
c using the encoder and respective network heads. For

simplicity, we denote z
(i)
a = za and z

(i)
c = zc.

Next, we utilize the supervised contrastive loss [13], an established modifi-
caiton of SimCLR [3] (Eq. 1). This formulation includes the temperature-scaled
cosine similarity sim, with temperature τ . This loss is minimized by requiring
the feature vectors of positive pairs in P(i) of a view z(i) ∈ Rd to be similar
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(pull) and negative pairs N (i) to be dissimilar (push):

ℓ(z(i),P(i),N (i)) = − log

∑
k∈P(i) exp

(
sim

(
z(i), z(k)

)
/τ

)∑
k∈(P(i)

⋃
N (i)) exp

(
sim

(
z(i), z(k)

)
/τ

) (1)

We enforce anatomy-contrast disentanglement by carefully defining positive
and negative pairs. To this end, we choose the positive pairs to be all pairs of
views originating from the same subject but were transformed with different
augmentations. The index set of these positive pair candidates for the i-th view
in a batch is denoted as P(i)

a . The negative pairs are built from all views originat-
ing from a different subject that were transformed with the same augmentations.
Correspondingly, the index set of negative view candidates for the i-th image in a
batch is denoted as N (i)

a . This design forces the network to find similar represen-
tations for the intensity-augmented views, leading to only anatomy information
encoded in za and, hence, anatomy-contrast disentanglement. In preliminary ex-
periments, we found the low-dimensional vector za guiding the reconstruction of
global anatomical structures, while fine-grained details are preserved by the ini-
tial noise map xT . This noise map is determined via DDIM inversion to encode
high-frequency information from the input [19].

To force the model to extract only contrast information into zc the definition
of positive and negative pairs is “inverted”. All positive pairs, denoted as P(i)

c ,
are given by the views originating from the same augmentation but different
subjects, i.e., the shared feature between these views is the contrast. On the
contrary, we consider the views of the same subject that were transformed with
different augmentations to be negative, denoted as N (i)

c . Consequently, the dif-
ferentiating feature between the negative views is also the contrast. Overall, the
encoder E(x) and the heads ha and hc need to learn disentangled representations
to minimize the overall loss per augmented view at index i:

L(i)
total = L(i)

DDIM + λcℓ(z
(i)
c ,P(i)

c ,N (i)
c ) + λaℓ(z

(i)
a ,P(i)

a ,N (i)
a ) (2)

with ℓ(z(i)) the loss defined in Eq. 1. L(i)
DDIM is the standard MSE loss to train

the DDIM model [21]. In practice, we set λc = λa = 0.5.
During inference, we first estimate a target contrast vector z̄c by projecting

and averaging a set of target images to a contrast vector. The target anatomy
vectors are discarded. The source image is projected to the latent space where
its contrast vector zc is swapped with z̄c. The new feature vectors z̄c, za, i.e., the
target contrast and source anatomy, serve as a condition to the diffusion model.

3.3 Augmentation Strategy

Our augmentation strategy is designed to cover all kinds of scanner variations
while preserving the subject’s anatomy. For our augmentation set, we gather
augmentation schemes from different previous works, namely, the global inten-
sity non-linear augmentation (GIN) [17] and the SynthX -framework [12]. We
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apply Gamma augmentations with γ = eu, u ∼ U(0, 0.5), and randomly gener-
ated biasfield corruptions as in the SynthX -framework. However, we replace the
synthetic contrasts generated in SynthX by applying the GIN augmentation [17]
to real samples from the training dataset, making our method agnostic to the
anatomical region. The augmented image is normalized to the [−1, 1]-range and
linearly interpolated with the original input image with a uniformly sampled in-
terpolation factor α. To counteract the blurring that occurs with GIN and deeper
network sizes, we linearly upsample the images to obtain sharper images that
are down-sampled back to the original resolution after augmentation. Examples
are shown in Figure 1. Importantly, the augmented images also serve as targets
for the diffusion model, enabling our model to synthesize various intensities.

3.4 Implementation Details

We parametrize the latent space heads h{c,a} as linear layers. The latent space
dimensions for both za and zc is da = dc = 256. We use an Adam optimizer
with a learning rate of 1e−4. We train the model for 2.5 million steps on a single
NVIDIA A40 GPU. Our total number of views is 81, derived from Naugs = 9
and B = 9 subjects. The GIN network [17] consists of two hidden layers with
two hidden channels, a kernel size of 3, and bilinear upsampling to 2048 pixels.

4 Results

4.1 Datasets

We use three different datasets for training and evaluation of our models: OA-
SIS3 [16], IXI [1], and OpenNeuro(ON)Harmony [23]. The OASIS3 dataset in-
cludes 3231 T1w MR Scans from 1047 subjects from various scanners of multiple
vendors and field strengths (for more details, see [16]). Next, the IXI dataset
consists of 580 healthy subjects from three sites: Hammersmith Hospital (HH,
Philips 3T), Guy’s Hospital (Philips 1.5T), and the Institute of Psychiatry (IOP,
GE 1.5T). The ONHarmony dataset (Phase A, Version 1.0.2) consists of 10
healthy subjects who have been scanned at least once in six 3T MR scanners
from the major vendors Siemens, Philips, and GE, yielding 80 T1w MRIs. We
use 80% of IXI-{Guy’s, HH}, and the full OASIS3 dataset to train our model.
The remaining IXI data, i.e., 20% of IXI-{Guy’s, HH} and the full IXI-IOP,
are used to evaluate our model and compare it to other scanner harmonization
methods. The ONHarmony dataset is used to evaluate traveling subjects, which
poses a particularly hard challenge since the scanners are unseen to all methods.

To standardize MRI data, we affinely register all scans to the MNI152 atlas
at 1 × 1 × 1mm3 resolution using the niftyreg library. We then skull-strip the
scans using HD-BET and apply N4 bias field correction. Lastly, the images
are normalized to the [−1, 1]-range in the brainmask. To save computational
resources, we randomly sample axial slices from the middle section (middle slice
±10) of the scan for training and use the axial middle slice for evaluation. Our
method, however, is not reliant on patches and can thus be readily applied to
3d volumes when the resources are available.
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4.2 Traveling Subjects

To evaluate the efficacy of scanner harmonization we need ground truth data,
which requires a subject to be scanned in multiple scanners within a short time
period. To this end, we use paired scans from traveling subjects in the ONHar-
mony dataset [23] and translate the scans from all scanners to the GE scanner
present in the dataset, as this is visually the most distinct. We compare our
method to the current state-of-the-art unsupervised deep learning scanner har-
monization model HACA3 [28] with the provided pre-trained weights as well as
the standard DiffAE [19] without disentanglement. HACA3 is trained on im-
ages with skull, hence, we performed inference on non-skull-stripped images but
calculated all metrics solely within the brain mask to ensure a fair comparison.

Our quantitative results in Figure 2a demonstrate a significant improvement
(p < 0.01, Wilcoxon signed rank test) over all baselines in all metrics, especially
in PSNR. The qualitative results in Figure 2b support these findings visually.
Our difference maps’ lower intensity indicates a smaller error than the other
methods. Importantly, we also observe anatomically faithful reconstructions and
well-adjusted contrasts in the harmonized images regardless of the source scanner
or subject due to the large variety of intensities our model has seen during
training. HACA3 reconstructs the anatomy faithfully but fails to capture the
contrast correctly due to the unseen scanners confronting the model with unseen
intensities. The standard DiffAE manages to match the intensity profile but
significantly changes the anatomy of the subject due to the entanglement of
anatomy and contrast by changing ventricle sizes and gyri and sulci shapes.

4.3 Scanner Classification and Age Regression

Table 1: Scanner classification and age regression results. We show the
effectiveness of our method in harmonizing images by (i) fooling a scanner clas-
sifier (scanner bias), (ii) achieving high target fidelity by translating images to a
new domain, and (iii) improving age regression performance on an unseen scan-
ner (IOP). Bold values indicate the best performance in each column.

Method
Scanner Bias Target Fidelity Age Regression

F1 (↓) Acc (↑) R2 (↑)

Target Scanner Guy’s HH IOP Guy’s HH IOP IOP → Guy’s

Unharmonized 0.593 0.568 0.543 0.031 0.222 0.021 0.58
CycleGAN 0.0 0.4 n/a 1.0 0.0 n/a -6.53
HACA3 0.226 0.688 0.451 0.469 0.0 0.383 0.57
Ours 0.187 0.111 0.167 0.75 0.8 0.681 0.69

To evaluate the effectiveness of various harmonization methods in mitigating
domain shift, we train a radiomics-based classifier [22] (pyradiomics 3.1.1) on
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Fig. 2: (a) Traveling subjects evaluation. Our method outperforms the other
methods in both PSNR and MS-SSIM. (b) Visual comparison. The difference
maps between the harmonized and target images visualize contrast adjustment
while anatomy is maintained (Best viewed magnified on screen).

three subsets of the IXI dataset: Guy’s, HH, and IOP. When images are perfectly
harmonized to a specific target scanner, the classifier should classify every sample
as stemming from this target scanner. We thus harmonize all images to a specific
scanner (column head in Table 1) and evaluate two scenarios: In the scanner bias
scenario, we compare the classifier’s output to the original scanner labels aiming
at minimizing the F1 score (↓), contrary to typical objectives. Conversely, in
the target fidelity scenario, we compare the classifier’s output to the label of the
target scanner itself expecting maximal classification accuracy (↑). We compare
our method against CycleGAN [27], trained on Guy’s and HH, and HACA3 [28].
Our model consistently works robustly for all three scanners, even when choosing
IOP as the target - a scanner not seen during training - and outperforms HACA3
across all comparisons. CycleGAN performs well for the Guy’s scanner but fails
for HH and is not applicable for IOP, highlighting its limitations.

Finally, as a downstream task, we train an age regressor on MRIs from Guy’s
and HH, and evaluate it in IOP, either unharmonized or following harmonization
to Guy’s domain space (Table 1, "Age Regression"). Our method outperforms all
comparisons methods in terms of R2 (↑) and significantly improves age regression
in unseen scanners. Overall, our method shows the best domain generalization
to unseen scanners, while not needing to train on target domain data.
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5 Discussion and Conclusion

This work presents a novel method for scanner harmonization of brain MRI. Our
approach builds upon the diffusion autoencoder [19] and introduces a novel con-
trastive anatomy-contrast-disentanglement module, including a domain-agnostic
intensity augmentation suite. Importantly, our approach does not require paired
data, either in the form of multiple scans of the same subject or multiple se-
quences, underscoring its broad applicability and overcoming a key limitation of
earlier approaches [4,24]. Currently, our approach uses 2D slices of the volumes
due to the heavy computational load of diffusion models. However, only the syn-
thesis part of our model is challenging to upgrade to 3D, as we do not rely on
comparisons between slices, as in [29,2]. A simple remedy to this problem is to
use latent or wavelet diffusion models [20,5]. In conclusion, we believe that our
work addresses challenges crucial for advancing multi-center MRI research and
diagnostic healthcare through generalizable scanner harmonization in the future.
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