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Abstract. Vision foundation models like DINOv2 demonstrate remark-
able potential in medical imaging despite their origin in natural image
domains. However, their design inherently works best for uni-modal im-
age analysis, limiting their effectiveness for multi-modal imaging tasks
that are common in many medical fields, such as neurology and oncology.
While supervised models perform well in this setting, they fail to lever-
age unlabeled datasets and struggle with missing modalities — a frequent
challenge in clinical settings. To bridge these gaps, we introduce MM-
DINOv2, a novel and efficient framework that adapts the pre-trained
vision foundation model DINOv2 for multi-modal medical imaging. Our
approach incorporates multi-modal patch embeddings, enabling vision
foundation models to effectively process multi-modal imaging data. To
address missing modalities, we employ full-modality masking, which en-
courages the model to learn robust cross-modality relationships. Further-
more, we leverage semi-supervised learning to harness large unlabeled
datasets, enhancing both the accuracy and reliability of medical pre-
dictions. We demonstrate our approach on glioma subtype classification
from multi-sequence brain MRI, achieving a Matthews Correlation Co-
efficient (MCC) of 0.6 on an external test set, surpassing state-of-the-art
supervised approaches by +11.1%. Beyond this specific application, our
framework provides a scalable and robust blueprint for various multi-
modal medical imaging problems effectively leveraging vision foundation
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models pre-trained on natural images while addressing real-world clinical
challenges such as missing data and limited annotations.1
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1 Introduction

Vision foundation models, particularly DINOv2 [20], have demonstrated signifi-
cant potential in medical image analysis through radiological benchmarks across
modalities like MRI, CT, and X-rays [22, 19, 1, 25]. However, existing approaches
remain constrained to uni-modal analyses or employ suboptimal multi-modal
strategies, such as treating MRI sequences as RGB channels [14]. This limita-
tion prevents their application to clinical tasks requiring joint interpretation of
multiple modalities common in fields like oncology or neurology.

Current supervised models for glioma subtype classification achieve compe-
tent results when all four standard MRI sequences (T1w, T1ce, T2w, FLAIR)
are available [10, 28, 24]. However, these approaches do not utilize large-scale
unlabeled datasets like BraTS [2], which contains over 2,000 multi-institutional
MRI scans originally curated for segmentation tasks. Further, real-world clinical
data often suffers from missing modalities — 15% of patients in routine practice
lack at least one essential MRI sequence due to acquisition constraints, protocol
variations, or artifacts [21]. Existing methods fail to address this variability, as
they either rigidly require fixed modality inputs or process sequences in isolation.

This work addresses these limitations by proposing a novel framework to
adapt pre-trained vision foundation models to the specific requirements of multi-
modal medical image analysis. Our approach leverages both labeled and unla-
beled data while being robust to missing sequences. The contributions of this
work are as follows:

1. We propose a novel approach to adapt pre-trained vision transformers
such as DINOv2 for medical imaging tasks, including a new multi-modal
patch embedding tailored for multi-modal imaging data.

2. We present an adaptive vision transformer architecture that can handle
missing sequences during training and evaluation. To this end, we extend
the existing masking objective with full modality masking to encourage
the model to learn cross-modality relations.

3. We demonstrate improved glioma subtype classification by effectively
utilizing large amounts of unlabeled data through semi-supervised learning.

2 Related Work

Deep Learning in Glioma Subtype Classification Glioma subtype clas-
sification is crucial for prognosis and treatment planning and has been tackled
1 The code is publicly available at: https://github.com/daniel-scholz/mm-dinov2.

https://github.com/daniel-scholz/mm-dinov2
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with deep learning-based approaches in many works. Van der Voort et al. [28]
combine segmentation and classification tasks to improve glioma subtype classi-
fication. Cluceru et al. [7] compare hierarchical classification inspired by genetic
markers with standard multi-class classification approaches. The class imbalance
in glioma is addressed in [24], where they utilize imbalance-aware supervised loss
functions. Ge et al. [11] propose a semi-supervised framework that relies on gen-
erative models to impute missing sequences. While these works tackle the glioma
subtype classification problem, they do not yet make use of the powerful available
foundational models.

Multi-Modal DINOv2 Integrations Foundational models such as DINOv2
have demonstrated strong representation learning in multi-modal settings. [17,
15] focus vision-text integrations but do not address multi-modal imaging. Fur-
ther, [5] integrates DINOv2 with text data in a medical context for radiology
applications. So far, multi-modal imaging with DINOv2 has only been addressed
in [14], where they adapt DINOv2 for medical imaging by naïvely stacking
modalities as RGB channels, limiting its effectiveness for multi-modal data. Our
work more flexibly extends DINOv2 to handle multiple imaging modalities, a
common requirement in medical imaging while addressing robustness to missing
modalities and leveraging semi-supervised learning.

3 Materials and Methods

Our goal is to enable the use of the pre-trained vision foundation model DINOv2
for multi-modal medical imaging tasks. To this end, we introduce substantial
modifications to three key components of DINOv2: the patch embeddings in
the vision transformer (ViT) [8] backbone, the masked image modeling, and the
image-level objective. An overview of our adaptations is shown in Figure 1.

3.1 Multi-modal Patch Embeddings

ViTs, the backbones of DINOv2, treat an image as a sequence of patches, which
are flattened and projected into a sequence of patch embeddings zp,with p ∈ P,
where P is the set of patches. The ViTs rely on positional embeddings to encode
the order and, hence, the spatial relationships between patches. However, these
learned embeddings are designed for uni-modal data, treating all input patches
as originating from a single image. Applying this directly to multi-modal images
discards the valuable multi-modal information about each input patch. Further-
more, pre-trained vision foundation models lack mechanisms to distinguish input
imaging modalities, which is crucial for modality-specific feature extraction, as
our experiments show. To address these limitations, we adapt the patch embed-
ding mechanism in the ViT in two ways. First, we make sure the pre-trained po-
sitional embeddings are applied separately to the patches of each modality rather
than treating all modalities as a single input image. This ensures that the spatial
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Fig. 1. Schematic representation of our proposed adaptations to DINOv2.
To leverage the rich synergies of multi-modal imaging data, we (a) define modality-wise
positional and individual modality embeddings (Sec. 3.1), (b) introduce full modality
masking to improve robustness against missing sequences (Sec. 3.2), and (c) leverage
existing labels in a semi-supervised setup (Sec 3.3).

relationships within each modality are preserved. Formally, we denote the po-
sitional embeddings as {zi}i∈{1,...,|P|}. These positional embeddings are learned
during the DINOv2 pre-training. Second, we introduce modality-specific embed-
dings. These embeddings are a learnable set of feature vectors {zm}m∈M with
the set of modalities M. These vectors are initialized as zm ∼ N (0, I), yielding
the patch embedding zi,m for the i-th patch in modality m: zi,m = zp+zi+zm.
Therefore, the model can efficiently learn modality-specific representations in
these sequence embeddings.

3.2 Missing Modality Robustness

In clinical practice, it is common for patients to lack one or more MRI sequences
due to acquisition constraints or artifacts. To ensure robustness to such cases,
we extend the patch-level objective used in DINOv2. The DINOv2 pre-training
employs two ViTs, a student and a teacher, which predict feature representa-
tions for each input patch. Input patches to the student are randomly masked
while the teacher receives unmasked patches to enforce meaningful representa-
tions in the predicted patch representations. A cross-entropy (CE) loss on the
masked patches is computed, where the teacher’s prediction serves as a target
for the student. We leverage this dynamic to encourage robustness to missing
sequences by adding full sequence dropout. We mask all patches correspond-
ing to one modality in the student’s input sequence while the teacher network
receives unmasked patches. The loss remains the same as in DINOv2 [20, 30].
This strategy encourages robust feature learning by forcing the student network
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to predict token representations for masked modalities based on cross-modality
relationships learned from available sequences.

3.3 Semi-supervised Extension

While DINOv2 is a self-supervised pre-training method, clinical applications
often involve datasets with some diagnostic labels available. To leverage these
labels during pre-training, we incorporate a semi-supervised mechanism inspired
by [9]. Therefore, we extend the image-level objective from DINOv2: The student
and teacher receive differently augmented crops of the same input image. Both
networks produce image-level probability distributions, prototype scores, which
are non-linear projections of the CLS token passed through a softmax function.
A cross-entropy (CE) loss is calculated between the student’s and the teacher’s
prototype scores, with the latter acting as a pseudo-label: Limage = −pt log ps,
where pt and ps represent teacher and student prototype scores. Since this cross-
entropy loss is also often used in supervised learning, it can be easily integrated
by replacing the teacher’s pseudo-labels with real labels when available. Fini et
al. [9] exploit this by formulating a joint loss between the supervised loss and
the image-level objective. Here, the prototype score’s dimensionality must match
the dataset’s number of classes. Intuitively, this guides prototype generation so
that CLS token clusters align with known class labels.

3.4 Training Setup

We use the ViT-B/14 model pre-trained with DINOv2 as model initialization
for all experiments. Since the provided checkpoints do not include weights for
the patch- and image-level heads, we randomly initialize these heads and train
only them for 10 epochs before unfreezing the entire model. The output size of
both heads is set to three to match the number of classes in our dataset. We
train the model for 200 epochs on a single NVIDIA A40 or A100 GPU with a
batch size of 64 and 42 steps per epoch. The base learning rate is set to 1e−4.
Positional embeddings are interpolated to match the size of our input images.
Global crops are resized to 98× 98 with sizes in the range (0.5, 1.0) of the input
image, while local crops are resized to 56× 56 with sizes in the range (0.2, 0.5).
Crops are always centered around one voxel containing tumor tissue, a step made
feasible by automated detection in a standard two-stage workflow; importantly,
our approach is not dependent on this cropping and remains applicable without
it. For the semi-supervised CE loss, we use a loss weight of 2.0, label smoothing
of 0.1, and a temperature scaling of 0.1 in the softmax.

3.5 Dataset

Our dataset comprises preoperative MR images (T1w, T1ce, T2w, FLAIR) from
large public datasets of adult patients with newly diagnosed gliomas namely
BraTS2021 [18, 3, 2], LUMIERE [26], UPENN GBM [4], Rembrandt [12] UCSF-
PDGM [6], EGD [27], and TCGA [3]. We hold out the TCGA dataset [3] for
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external testing and randomly split the remaining datasets in 70/10/20% for
training, validation, and internal testing. This setup yields 2661 (1162 labeled)
subjects for training and validation, 296 for internal, and 214 for external testing.
All images provide all four imaging sequences outlined above, while the labeled
images have labels from biomarker testing for IDH mutation and 1p/19q status
in order to classify samples according to the 2021 WHO classification of brain
tumors [29] into (a) IDH wildtype glioblastoma (GBM), (b) IDH mutant and
1p/19q intact astrocytoma (Astro), and (c) IDH mutant and 1p/19q codeleted
oligodendroglioma (Oligo). The class prevalence in the dataset is 80/10/10%.

All images are resampled to 1×1×1mm isotropic resolution and rigidly reg-
istered to the SRI24 atlas [23]. For training, we randomly sample axial, sagittal,
and coronal slices from the volume with at least 500 tumor pixels, crop them
to 96 × 96. We evaluate on 96 × 96 axial middle slices of the tumor, resized to
224× 224, which corresponds to the default evaluation in the DINOv2 code.

4 Results

We rigorously evaluate how adapting pre-trained DINOv2 improves multi-modal
medical image classification and enhances robustness to missing modalities. Fur-
thermore, we perform a detailed ablation study to assess each design choice of our
proposed method, demonstrating how these contributions collectively improve
performance for the clinical application of glioma subtype classification.

4.1 Adapting Vision Foundation Models

To evaluate the effectiveness of our proposed adaptations, we compare two sce-
narios: fully supervised training and semi-supervised pre-training, followed by
linear evaluation. Both scenarios include the following two architectures: (1)
RGB DINOv2, a pre-trained DINOv2 with stacked T1ce, T2w, and FLAIR se-
quences as RGB channels [14] and (2) MM-DINOv2, our multi-modal adaptation
of DINOv2. Table 1 summarizes these results. Given the imbalanced nature of
the multi-class classification task, we employ Matthews Correlation Coefficient
(MCC) as the primary evaluation metric [16], alongside AUROC for classifier
calibration and class-wise F1 scores to assess per-class performance.

Supervised Results In the fully supervised setting, only labeled data are used for
training (approximately 50% of the full dataset). RGB DINOv2 is compared fully
fine-tuned and “frozen”, which only utilizes the pre-trained weights. ResNet34 [13]
serves as a strong baseline due to its robustness in low-data regimes. Our adapted
multi-modal DINOv2 with full fine-tuning outperforms both the ResNet and the
RGB DINOv2 variants, indicating the positive influence of our design choices for
multi-modal adaptation, as well as the power of pre-trained foundation model
features over the randomly initialized ResNet.



Multi-Modal DINOv2 for Medical Image Analysis 7

Semi-Supervised Results In the semi-supervised setting, all data, including la-
beled and unlabeled, are utilized. We add the proposed semi-supervised extension
(Section 3.3) to RGB and MM-DINOv2. We find our MM-DINOv2 outperforms
the RGB DINOv2 in terms of MCC and AUROC. It also further improves in
terms of F1 score for two out of three classes compared to the labeled-data-
only model, highlighting the strength of incorporating unlabeled images into the
training process. Yet, we assume that the unlabeled data introduces more class
imbalance compared to the labeled-data-only setting, causing a drop in classifi-
cation performance in the underrepresented oligodendroglioma class (Oligo).

Table 1. Comparison of supervised and semi-supervised approaches for
glioma subtype classification using Matthews Correlation Coefficient (MCC), AU-
ROC, and class-wise F1 scores. Results are reported for RGB DINOv2 with con-
catenated modalities as RGB channels and our adapted multi-modal DINOv2 (MM-
DINOv2) with continuous pre-training. MM-DINOv2 outperforms the comparison
methods in all metrics (best, best in section).

Method MCC AUROC F1 Score

Astro GBM Oligo

Int. Ext. Int. Ext. Int. Ext. Int. Ext. Int. Ext.

Supervised
ResNet34 [13] 0.58 0.54 0.92 0.79 0.60 0.66 0.92 0.88 0.43 0.35
RGB DINOv2 (frozen) [14, 20] 0.40 0.27 0.87 0.74 0.46 0.31 0.90 0.81 0.35 0.15
RGB DINOv2 [14] 0.55 0.52 0.92 0.80 0.55 0.64 0.90 0.85 0.50 0.37
MM-DINOv2 (ours) 0.68 0.60 0.95 0.89 0.68 0.71 0.94 0.89 0.62 0.33

Semi-supervised
RGB DINOv2 [14] 0.47 0.37 0.84 0.77 0.44 0.42 0.93 0.83 0.40 0.37
MM-DINOv2 (ours) 0.74 0.57 0.95 0.86 0.76 0.71 0.96 0.89 0.67 0.21

4.2 Missing Sequence Robustness

To evaluate the effectiveness of our full modality masking strategy, we compare
models trained with and without this design choice on our test sets where one
MRI sequence is randomly masked. Across all metrics, including MCC, AU-
ROC, and class-wise F1 scores, the model trained with full sequence masking
consistently outperforms the model trained without it. Solely, the external test
set performance on the astrocytoma class suffer slightly in terms of F1 score.
These results demonstrate that our masking strategy effectively encourages the
model to learn cross-modality relationships, enabling robust performance when
one modality is missing during inference, a common scenario in clinical practice.



8 D. Scholz et al.

Table 2. Missing sequence robustness analysis. We compare two models trained
with all four sequences and either with and without full sequence dropout by evaluating
their performance with one sequence randomly missing.

Full Sequence Masking MCC AUROC F1 Score

Astro GBM Oligo

Int. Ext. Int. Ext. Int. Ext. Int. Ext. Int. Ext.

No 0.46 0.41 0.86 0.82 0.47 0.58 0.92 0.83 0.36 0.13
Yes 0.57 0.46 0.89 0.83 0.61 0.56 0.94 0.86 0.42 0.28

4.3 Ablation Study

We conduct an ablation study to rigorously evaluate the impact of each de-
sign choice in our model, ranging from simply concatenating all tokens from all
modalities to our full multi-modal adaptation. The results, shown in Table 3,
are evaluated in the semi-supervised setting, as it achieved the best overall per-
formance. We observe poor performance initially with a single global positional
embedding for all tokens from all modalities treated as a single input modality,
which corresponds to spatially concatenating modalities. This is expected, as
spatial concatenation implies false spatial correlations between modalities. All
our design choices, including modality-specific embeddings (Section 3.1) and full
sequence masking (Section 3.2), consistently improve classification performance.

Table 3. Ablation study over our design choices. Adding our proposed adapta-
tions continuously improves the glioma subtype classification performance.

Semi-supervised MCC AUC F1 Score

Astro GBM Oligo

Int. Ext. Int. Ext. Int. Ext. Int. Ext. Int. Ext.

Concat Tokens 0.40 0.29 0.84 0.73 0.41 0.31 0.93 0.82 0.29 0.22
+ Per-Image Pos Embedding 0.63 0.36 0.93 0.79 0.68 0.45 0.95 0.83 0.35 0.12
+ MRI Sequence Embedding 0.74 0.49 0.94 0.86 0.71 0.65 0.97 0.86 0.71 0.13
+ Full Sequence Masking 0.74 0.57 0.95 0.86 0.76 0.71 0.96 0.89 0.67 0.21

5 Conclusion

This work introduces a novel adaptation strategy for vision foundation mod-
els like DINOv2 to effectively address multi-modal medical imaging challenges.
Our approach enhances robustness to missing modalities and leverages par-
tially available labels to improve performance on clinical tasks such as glioma
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subtype classification. Our findings highlight the importance of incorporating
semi-supervised learning, which outperformed supervised training by utilizing
all available data. Moreover, we demonstrated that methodological adaptations
tailored to multi-modal medical image analysis are essential for tasks integrat-
ing multiple imaging modalities. Notably, our full sequence masking strategy
effectively addressed the challenge of missing MRI sequences, a frequent issue in
clinical workflows. Our contributions complement existing approaches like Rad-
DINO [22] while emphasizing multi-modal data integration and robustness, crit-
ical factors for real-world clinical scenarios. Furthermore, our results align with
prior studies on semi-supervised learning in medical imaging [11] while extend-
ing these insights to foundation models. By systematically addressing the key
challenges of multi-modal integration, missing data, and limited annotations, our
work provides a generalizable blueprint for adapting vision foundation models to
a wide range of multi-modal medical imaging problems. However, our current ap-
proach is limited to 2D slice-based training and evaluation, which may not fully
capture the spatial relationships inherent in volumetric medical data. Addition-
ally, our experimental setup used cropping strategies that may not be optimal
for all clinical scenarios or imaging protocols. Future directions could explore
combining our approach with methods like the Medical Slice Transformer [19]
to extend foundation models to 3D volumetric imaging tasks, broadening their
applicability to radiology and beyond. By addressing critical challenges in multi-
modal medical imaging, we hope our work inspires further innovation in diag-
nostic tools and contributes to improved patient care.
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