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Abstract. Medical image segmentation is essential for identifying lesion regions 
and diagnosing disease. Convolutional neural networks (CNNs) and transformer-
based models often struggle to effectively capture both local details and global 
contextual features in medical images, leading to a decline in segmentation per-
formance. To address this problem, a novel medical image segmentation model, 
KMUNet, is proposed by integrating Kolmogorov-Arnold networks (KAN) and 
Mamba based on the traditional U-shape architecture. This model employs a 
CNN-based encoder to extract local features and integrates a State Space Model-
based Mamba module in the decoder to capture long-range dependencies. Ini-
tially, a global downsampling module, called KAN-PatchEmbed is presented. 
This module differs from traditional convolutional operations in utilizing an in-
terval sampling strategy to alleviate the loss of feature information and KAN to 
reduce computational complexity, respectively. Furthermore, the Kolmogorov-
Arnold Spatial-Channel Attention module is designed for skip connections, 
where KAN is employed to allocate the weight of the current channel by aggre-
gating features across all stages. Finally, the proposed model was evaluated on 
three publicly available datasets. Experimental results reveal that KMUNet out-
performs other models in segmentation tasks and produces more visually appeal-
ing segmentation results. Our code is available at https://github.com/zhang-
hongsheng/KMUNet. 
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1 Introduction 

Medical image segmentation is a crucial aspect of medical image analysis, focused on 
automatically identifying lesion regions in medical images. Over the years, widespread 
deep-learning approaches have been proposed in medical image segmentation tasks 
[4][5]. UNet [1], a prominent architecture of convolutional neural network (CNN) 
based deep learning model, established a U-shaped encoder-decoder and proved to be 
highly suitable for medical image segmentation tasks. Numerous studies have explored 
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CNNs [2][3], successfully capturing local features in medical image classification and 
segmentation. However, a limitation of CNNs is the inability to effectively capture 
global features in images, leading to error predictions for small target regions. To ad-
dress this problem, a context encoder network (CE-Net) [4] was presented by leverag-
ing dilated convolutions and multi-scale pooling operations to extract contextual fea-
tures in medical image. Moreover, a novel context pyramid fusion network (CPFNet) 
was presented by combining two pyramidal modules to fuse global/multi-scale context 
information. Furthermore, Xue et al. [6] proposed an adversarial network with multi-
scale l1 loss to capture global and local features. However, these approaches still strug-
gle to address the need for global modeling in medical images. 

Recently, state space models (SSMs) have achieved significant advancements and 
demonstrated superior performance in effectiveness and computational efficiency for 
long-sequence modeling [7][8]. Mamba [9], a network based on SSMs, has demon-
strated competitive performance compared to traditional SSMs by utilizing an efficient 
selective scanning mechanism for global modeling in visual tasks. Vision Mamba [10] 
introduced a cross-scanning module to improve global modeling capabilities in visual 
applications. However, Mamba-based methods face challenges in capturing local fea-
tures in medical image segmentation. Our preliminary experiments reveal that Mamba-
based models often lead to under-segmentation due to insufficient attention to local 
details lesion boundaries and small regions. 

Existing CNN-based and Mamba-based models have made significant progress in 
medical image segmentation. However, the lack of interpretability in these models lim-
its their application in clinical decision-making [28]. Recently, the Kolmogorov–Ar-
nold Network (KAN) [11], based on the Kolmogorov-Arnold theorem, replaced tradi-
tional Multilayer Perceptron (MLP) with learnable activation functions, aiming for an 
enhanced interpretable neural network. Consequently, we utilized KAN to enhance the 
interpretability of the model and segmentation performance, thereby improving its po-
tential for application in clinical diagnosis.  

Currently, numerous studies have focused on the role of multi-scale and multi-stage 
information in medical image segmentation [5][16]. Specifically, literature [16] com-
bined four modules with their U-shape architecture for a light-weight medical image 
segmentation model, called MALUNet. This model introduced a Channel Attention 
Bridge (CAB) block to integrate cross-stage information from various stages along the 
channel dimension. While CAB achieved multi-stage feature fusion through MLP, it 
has two limitations: (1) weak interpretability of computational mechanisms, and (2) 
quadratic growth in computational complexity as feature dimensions increase. 

Based on the above discussions, we propose a unified medical image segmentation 
model, called KMUNet based on the strengths of both KAN and Mamba. KMUNet 
utilizes CNN-based encoding to extract local features of images and employs Mamba 
decoding for global modeling. The main contributions of this paper are as follows: 

• We propose a medical image segmentation model named KMUNet, which inte-
grates KAN and Mamba based on the UNet architecture. 

• We design KAN-PatchEmbed as a global downsampling operation, effectively re-
ducing the loss of feature information through interval sampling. Moreover, it improves 
the feature extraction capabilities of KAN. 
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• We propose a Kolmogorov-Arnold Spatial-Channel Attention Block (KAN-SCA), 
which enhances multi-scale local features and integrates multi-stage global contextual 
information during decoding. Particularly, we employ KAN to capture global contex-
tual relationships, thereby allocating weights to feature maps. 

• The proposed model was compared with 15 models on three publicly available 
datasets, demonstrating its superior performance quantitatively and qualitatively. It has 
been proven to be a versatile model capable of segmenting various types of medical 
images. 

2 Methodology 

2.1 KMUNet Architecture 

Our proposed KMUNet model is a four-layer U-shaped architecture with encoder, de-
coder, and skip-connect parts, as shown in Figure 1 (b). The proposed KMUNet em-
ploys a CNN-based encoder to extract local features. These convolutional operations 
hierarchically capture local features in images, with lower layers focusing on fine-
grained local details and deeper layers encoding higher-level semantic information. In 
the decoder, we introduce Mamba modules for global modeling to effectively capture 
long-range dependencies, which differs from traditional U-Net. This design preserves 
sensitivity to local details while significantly modeling the semantic correlation be-
tween pathological regions and surrounding tissues. The architecture is appropriate for 
medical image segmentation tasks involving irregular shapes and poorly defined 
boundaries. 

2.2 KAN-PatchEmbed 

Vision Transformer (ViT) [12] introduced the PatchEmbed module, which utilizes a 
4 4 convolution kernel with a stride of 4 to extract image information and reduce the 
image size. However, the large-stride convolution operations during downsampling 
may result in irreversible loss of spatial information, particularly in edge details that are 
crucial for medical image analysis. Therefore, we propose KAN-PatchEmbed for 
downsampling to resolve the loss of feature information and reduce the computational 
cost of the model. As displayed in Figure 1 (a), the input image H W CX    is sampled 
at intervals of four pixels both in rows and columns. For instance, = =8H W , and the 
formula is defined as follows: 

 0 1 15{ , ,..., } downsampling( )X X X X  (1) 

All sampled images are concatenated as * /4 /4 16H W CX   ,  

 *
0 1 15Concat{ , ,..., }X X X X  (2) 

where Concat is the concatenation operation. 
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Fig. 1. (a) KAN-PatchEmbed module. (b) the proposed KMUNet model. (c) KAN-SCA, Kol-

mogorov-Arnold Spatial-Channel Attention module. 

Finally, we utilize KANs to map *X to a high-dimensional space by adjusting the 
numbers of channels. The KAN-PatchEmbed expression can be represented as follows: 

 LN[KANs( )]Out X   (3) 

where LN is the LayerNorm operation, and n is determined by the number of feature 
channels required by the first convolutional layer. 

2.3 KAN-SCA 

We design a KAN-SCA module to fuse multi-scale and multi-stage global contextual 
information, as illustrated in Figure 1 (c). Unlike MALUNet [16], we replace the MLP 
with KAN. For instance, in the fourth-stage KAN-SCA module, we first incorporate 
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the Spatial Attention Bridge (SAB). The SAB enables the model to focus on critical 
spatial features and suppress irrelevant background information. To achieve this, max 
pooling and average pooling are initially operated on the feature map, and the resulting 
feature maps are then concatenated. Subsequently, we utilize a shared dilated convolu-
tion operation to fuse feature maps and generate a spatial attention map by a sigmoid 
function. Finally, the element-wise multiplication operation is performed between the 
original image and the spatial attention map, adding this result to the residual infor-
mation to produce the final spatial attention map. 

The novelty of KAN-SCA is its initial integration of KAN into the Channel Attention 
Bridge (CAB) to provide the interpretability. This model utilizes KANs to generate 
channel attention maps, which are subsequently utilized to guide residual feature fusion 
in subsequent layers via adaptive weight allocation. As a result, CAB enriches the 
multi-stage features and allows the model to focus on essential channels by suppressing 
channels with low context correlation. This process can be expressed using the follow-
ing formulas:   

 C ( ( )), { }oncat AvgPool 1,2,3,4iy x i   (4) 

 4 KANs(Conv1D }1( ( )) , ,2,) 3,4{a iytt    (5) 

 4 4 4 4Out x att x    (6) 

where AvgPool refers to global average pooling, and Conv1D represents 1D convolu-
tion operation.  
 By utilizing the powerful fitting ability of KAN, our proposed KAN-SCA module 
effectively fuses multi-scale and multi-stage information during decoding, thereby pro-
ducing superior segmentation performance. 

3 Experiment 

3.1 Dataset  

To validate the effectiveness and generalization capability of KMUNet, we evaluated 
our network using three public datasets. CVC-ClinicDB [25] comprises 612 images 
from 31 colonoscopy sequences. The Glas [26] contains 165 images of colorectal ade-
nocarcinoma. Additionally, the BUSI [27] includes ultrasound images of breast cancer 
pathology along with their corresponding segmentation maps. BUSI contains 210 ma-
lignant breast ultrasound images, and we split all datasets into 70% training and 30% 
test. Images were resized to 256×256.  

3.2 Competition methods and implementation details  

To verify the effectiveness of our KMUNet, we compared it with the following models: 
UNet [1], UNet++ [13], SCR-Net [14], U-Next [15], MALUNet [16], Meta-UNet [2], 
ACC-UNet [17], Rolling-Unet (Roll-UNet) [18], MHorUNet [3], ATTENTION SWIN 
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U-NET (Att-UNet) [24], VM-UNet [19], H-vmunet [20], SkinMamba(skinmamba) 
[21], U-Mamba [22], and U-KAN [23]. Our experiment was conducted on an NVIDIA 
GeForce RTX 3090 GPU with 24 GB of memory. The proposed model utilized the 
AdamW optimizer with an initial learning rate of 0.001 and a batch size of 16 on the 
CVC-ClinicDB and Glas datasets. On the BUSI dataset, the model used the Adam op-
timizer with a cosine annealing learning rate scheduler, an initial learning rate of 1e-4, 
and a batch size of 8，other hyperparameters follow PyTorch defaults, all trained for 
400 epochs. The loss function integrates cross-entropy and Dice losses with 1:1. All 
models were evaluated using three metrics: Dice, Sensitivity (Sen), and Precision (Pre). 

3.3 Comparison with Several State-of-the-art Segmentation Models  

Table 1 reports a quantitative results comparison with state-of-the-art methods on three 
datasets. The best results are indicated in bold, and the suboptimal results have been 
underlined. Our KMUNet outperforms other models on the CVC-ClinicDB dataset and 
achieves the highest Dice score on three datasets. Additionally, it maintains the best 
Sensitivity on the CVC-ClinicDB and Glas datasets, and the highest Precision on the 
CVC-ClinicDB and BUSI datasets. 

Table 1. Quantitative comparison with state-of-the-art methods on the three datasets. 

Methods 
CVC-ClinicDB Glas BUSI 

Dice Sen Pre Dice Sen Pre Dice Sen Pre 

UNet 0.9102 0.9245 0.8975 0.9237 0.9271 0.9203 0.6923 0.6601 0.7521 

UNet++ 0.9033 0.9084 0.9112 0.9347 0.9255 0.9441 0.7220 0.7003 0.7688 

SCR-Net 0.9229 0.9353 0.9109 0.9452 0.9400 0.9506 0.7168 0.7130 0.7453 

Att-UNet 0.7212 0.6851 0.7660 0.8915 0.9074 0.8969 0.4777 0.4904 0.5015 

U-Next 0.9171 0.9176 0.9181 0.9437 0.9401 0.9475 0.7395 0.7324 0.7636 

MALUNet 0.8753 0.9124 0.842 0.9140 0.9189 0.9096 0.6866 0.6815 0.6991 

Meta-UNet 0.9301 0.9210 0.9394 0.9190 0.9170 0.9211 0.7575 0.7474 0.7816 

ACC-UNet 0.9290 0.9361 0.9232 0.9442 0.9441 0.9444 0.7363 0.7124 0.7917 

Roll-Unet 0.9298 0.9359 0.9238 0.9465 0.9422 0.9510 0.7327 0.7355 0.7425 

VM-UNet 0.8845 0.8741 0.8961 0.9393 0.9430 0.9358 0.7455 0.6923 0.8377 

H-vmunet 0.8977 0.8924 0.9056 0.9332 0.9233 0.9434 0.7382 0.7387 0.7559 

MHorUNet 0.9112 0.9325 0.8925 0.9207 0.9051 0.9372 0.7318 0.7109 0.7596 

SkiMamba 0.9194 0.9064 0.9332 0.9394 0.9354 0.9436 0.7563 0.7085 0.8142 

U-Mamba 0.9161 0.9162 0.9170 0.9419 0.9389 0.9449 0.7677 0.7424 0.8000 

U-KAN 0.9371 0.9307 0.9439 0.9411 0.9358 0.9464 0.7638 0.7371 0.8101 

Our Model 0.9384 0.9325 0.9451 0.9485 0.9504 0.9466 0.7731 0.7221 0.8463 

Figure 2, Figure 3, and Figure 4 illustrate the visual comparison results on the CVC-
ClinicDB, Glas, and BUSI datasets, respectively, where false positives are denoted in 
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red and false negatives in green. As illustrated in these figures, our proposed KMUNet 
demonstrates excellent performance on visual results, preserving fine-grained structure 
and capturing subtle details, particularly in complex regions and boundaries.  

 Image_1           GT          Our Model       UNet           UNet++                            U-Next      SCR-UNet   MALUNet   Meta-UNetAtt-UNet

 ACC-UNet                        VM-UNet   H-vmunet   MHorUNet  skinmamba  U-mamba      U-KANRoll-UNet

  Image_2           GT         Our Model       UNet           UNet++      Att-UNet        U-Next      SCR-UNet  MALUNet   Meta-UNet

 ACC-UNet                       VM-UNet    H-vmunet   MHorUNet  skinmamba   U-Mamba     U-KANRoll-UNet

 
Fig. 2. Segmentation results of different methods applied to the CVC-ClinicDB dataset. Red 

indicates false positives, while green indicates false negatives. 

Image_3             GT         Our Model      UNet            UNet++                            U-Next       SCR-UNet  MALUNet   Meta-UNetAtt-UNet

 ACC-UNet                        VM-UNet   H-vmunet   MHorUNet   skinmamba  U-Mamba     U-KANRoll-UNet

 Image_4           GT          Our Model       UNet          UNet++                              U-Next      SCR-UNet   MALUNet  Meta-UNetAtt-UNet

 ACC-UNet                        VM-UNet    H-vmunet  MHorUNet  skinmamba  U-Mamba     U-KANRoll-UNet

 
Fig. 3. Segmentation results of different methods applied to the Glas dataset. 

As shown in Figure 3, in the area pointed by the red arrow in Image_3, CNN-based 
models (i.e. Att-UNet, U-Next, MALUNet, Meta-UNet, and ACC-UNet) produce more 
false positive regions. In the area indicated by the blue arrow in Image_4, Mamba-based 
and CNN-based models both generate false negatives, incorrectly classifying white pix-
els within the lesion area as normal regions. Unlike CNN-based or Mamba-based mod-
els, our KMUNet achieves the lowest false predictions and demonstrates high similarity 
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with the ground truth. These results suggest the abilities of our model to effectively 
capture local details and global contextual features in medical images, supporting the 
benefits of integrating CNN-based encoding and Mamba-based decoding. 
To further investigate the effectiveness and generalization ability of our KMUNet, we 
conducted experiments on the BUSI dataset, which presents greater challenges in med-
ical image segmentation tasks compared to the former two datasets. From the results of 
Image_5, we observe that CNN-based and Mamba-based models struggle with under-
segmentation and over-segmentation. Our KMUNet outperforms the other models, with 
fewer false positives and clearer boundaries. 
 In addition, our KMUNet, with approximately 10M parameters and 3 GFLOPs, 
achieves an average reduction of 67% in parameter count and 94% in computational 
cost compared to UNet. Furthermore, KMUNet demonstrates superior computational 
efficiency over other Mamba- or Transformer-based models 

   Image_5           GT         Our Model      UNet           UNet++                             U-Next       SCR-Net    MALUNet   Meta-UNetAtt-UNet

ACC-UNet                        VM-UNet    H-vmunet   MHorUNet  skinmamba  U-Mamba     U-KANRoll-UNet

 Image_6            GT         Our Model       UNet          UNet++                             U-Next       SCR-Net     MALUNet   Meta-UNetAtt-UNet

ACC-UNet                        VM-UNet    H-vmunet   MHorUNet  skinmamba   U-Mamba    U-KANRoll-UNet

 
Fig. 4. Segmentation results of different methods applied to the BUSI dataset. 

4 Conclusion 

This article proposes a medical image segmentation model, KMUNet, which effectively 
combines the strengths of CNNs and Mamba to capture local and global features sim-
ultaneously. We first design a global downsampling (KAN-PatchEmbed) module to 
reduce the loss of feature information and computational complexity. Additionally, a 
KAN-SCA module is developed to effectively enhance multi-scale local features and 
capture correlation information from multi-stage information during decoding. Exper-
iments on three public datasets demonstrate that KMUNet shows significantly im-
proved segmentation results and generalization capabilities compared to other models.  
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