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Abstract. Nuclei instance segmentation is crucial for biomedical re-
search and disease diagnosis. Pathologists utilize information such as
color, shape, and the surrounding tissue microenvironment to distin-
guish nuclei. However, existing models are limited as they rely solely
on features from the current patch, neglecting contextual information
from neighboring patches. This limitation impedes the model’s ability
to accurately identify nuclei. To address this issue, we propose CA-
SAM2, a novel framework that enhances the prompt propagation ca-
pability of the Segment Anything Model 2 (SAM2) through a Context
Injection Module(CIM), integrating surrounding contextual information
during segmentation. Additionally, to adapt SAM2 to the pathology im-
age domain, we introduce a convolutional branch to extract domain-
specific features from pathological images. We further design a Multi-
Level Feature Refinement Block (MFRB) to refine the prior features
extracted by SAM2 and integrate domain features. Finally, we incor-
porate a regression head and a classification head after the convolu-
tional branch to automatically generate point prompts, eliminating the
need for manual annotation. Extensive evaluations of CA-SAM2 on the
MoNuSeg and CPM-17 datasets demonstrate its effectiveness and prac-
ticality in enhancing nuclei segmentation. The code is available at https:
//github.com/HanbinHuang123/CA-SAM2.
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1 Introduction

Nuclear instance segmentation in pathological images is a fundamental step in
extracting meaningful biological information. The relative topological structure,
size, and shape of nuclei are crucial for downstream tasks such as cancer diagnosis
and tumor grading [11]. However, digitized Whole-Slide Images (WSIs) possess
extremely high resolution and contain numerous nuclei. Even when divided into
smaller patches, pathologists still require significant time to review and annotate
these patches [9], making label acquisition challenging. With the advancement of
deep learning (DL) techniques, several automated nuclear segmentation models,
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such as HoVer-Net [2], U-Net [14], and nn-UNet [5], have achieved impressive
performance. These models employ an encoder to extract features from patches
and a decoder to process these features into final segmentation masks. However,
relying solely on local patch features may not be sufficient to achieve optimal
results. In practice, pathologists also consider contextual information from sur-
rounding patches when annotating, including nuclear spatial distribution and
tissue structure. Therefore, we propose a novel pipeline that incorporates con-
textual information from surrounding patches during model prediction, leading
to more accurate mask predictions.

Recently, Meta company introduced SAM2 [13], a foundational model for
video segmentation, which incorporates a stream memory for real-time video
processing and prompt propagation. Trained on the large-scale Segment Any-
thing Video (SA-V) dataset, SAM2 demonstrates exceptional performance and
generalization capabilities. Although originally designed for video segmentation,
its unique memory mechanism holds potential for application in 2D pathologi-
cal images. As shown in Fig. 1, when patches are treated as video frames, the
scanning process of a WSI resembles a complete video. In this scenario, by ap-
plying SAM2 to process this "video", the prompt propagation mechanism can
be used for context awareness. Based on this thinking, we apply SAM2 to nu-
clear instance segmentation in pathological images and propose a Context In-
jection Module(CIM), that extends SAM2’s memory module to better capture
surrounding contextual information.

However, the application of SAM2 in pathological scenarios presents two pri-
mary challenges. First, the SAM2 training dataset does not include pathological
images. Directly applying the model to these images would degrade segmenta-
tion performance, as SAM2 is unable to extract domain-specific features present
in pathological images. One possible approach would be to retrain the entire
SAM2 model on pathological images. However, this would require a large-scale
pathological dataset and substantial computational resources, which is imprac-
tical given the difficulty of annotating pathological images. Second, although
SAM2 supports prompt propagation and is capable of segmenting an entire
video using only the prompt from the first frame, the nuclear distribution in
pathological images is relatively dense, making it difficult to capture all nuclear
instances through prompt propagation alone. This often leads to missed detec-
tions that impair segmentation performance. To address these challenges, we
freeze SAM2’s image encoder and introduce a convolutional branch to assist in
extracting domain-specific features. Additionally, we design a Multi-level Fea-
ture Refinement Block (MFRB), which facilitates the fine-tuning of features and
enables efficient information flow between the ViT and convolutional branches.
This design helps SAM2 adapt to the pathology image domain. Finally, we incor-
porate a regression head and a classification head into the convolutional branch,
which automatically generates point prompts for each nuclei, reducing the num-
ber of missed detections.

In summary, our main contributions are as follows: (1) We propose a novel
context-aware network based on SAM2, which incorporates surrounding context
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Fig. 1. Overall architecture of the proposed CA-SAM2. Consisting of two parallel
branches: the ViT branch and the convolutional branch. In the ViT branch, 1, K1,
K2, and K3 represent the starting indices for the four stages of the SAM2 image en-
coder, with specific values depending on the backbone. The ViT branch captures prior
features, while the convolutional branch extracts domain-specific features. These fea-
tures are refined and fused through the MFRB to adapt to the pathology image domain.
Subsequently, the CIM supplements the image embedding with contextual information
to better decode the mask. Finally, both the image embedding and memory embedding
are input into the CIM to provide contextual information for the next patch.

information during model segmentation, thereby improving segmentation per-
formance.(2) We introduce the Multi-level Feature Refinement Block (MFRB),
which fine-tunes the prior features extracted by the ViT branch and integrates
the domain features extracted by the convolutional branch, bridging the domain
gap between natural images and pathological images.(3) Extensive experiments
on the MoNuSeg and CPM-17 datasets demonstrate the effectiveness and supe-
riority of the proposed method.

2 Method

2.1 Overview of CA-SAM2

The proposed network is illustrated in Fig 1. For the input pathological image I ∈
RH×W×3, we employ a sliding window to scan I in a counterclockwise direction,
starting from the center, generating a set of patches P = {p}ni=1 ∈ R256×256×3,
which correspond to video frames. For the i-th input patch Pi, it is first passed
through the encoders of both branches to extract prior features Fp and domain
features Fd, respectively. Meanwhile, by incorporating the Multi-level Feature
Refinement Block (MFRB) before each ViT block, the prior features Fp are re-
fined, and missing domain features are extracted and fused from Fd , facilitating
adaptation to the pathology image domain. The enhanced image embedding Ei

is then input into the Context Injection Module (CIM) to integrate contextual
information from the surrounding segmented patches, generating the final im-
age embedding Ec

i . Additionally, a regression(Reg) head and a classification(Cls)
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Fig. 2. Detailed architecture of CIM and MFRB. The blue, orange, and yellow embed-
dings represent the Prior embedding, Domain embedding, and Memory embedding,
respectively.

head are added after the convolutional branch to predict the points correspond-
ing to each nuclei[16], which are treated as point prompts and passed into the
prompt encoder. Inspired by PromptNucSeg[15] we adopt a "one-prompt-one-
nucleus" approach for decoding. After obtaining the mask for each nucleus from
the mask decoder, these masks are combined to form the instance mask. Finally,
the instance mask, along with the image embedding Ei, is input into the memory
encoder to generate the memory embedding Em. Specifically, the Em and the
Ei are separately stored in different memory banks within the CIM, where they
continue to provide contextual information for the next patch.

2.2 Context Injection Module

Although SAM2’s memory module utilizes foreground information from seg-
mented patches to assist in segmenting the current patch, the first-in, first-out
management strategy does not effectively provide the necessary foreground in-
formation. Additionally, background information, such as the tissue microenvi-
ronment plays an essential role in identifying nuclear instances, which SAM2 cur-
rently lacks. To address these issues, we have designed the CIM to complement
the image embedding with both foreground information (e.g., nucleus texture
and size) and background information (e.g., tissue microenvironment) from sur-
rounding segmented patches. The CIM consists primarily of two Memory Banks:
Environment Memory Bank(EMB) and Texture Memory Bank(TMB). Environ-
ment Memory Bank is designed to supplement the surrounding tissue microen-
vironment information, while Texture Memory Bank provides additional fore-
ground information, such as the texture and size of similar nuclei. Consequently,
our CIM effectively extracts and utilizes surrounding contextual information.

Environment Memory Bank: To better capture the characteristics of the nu-
clei and their surrounding tissue environment, Environment Memory Bank(EMB
) stores the image embeddings Ej (where j ∈ 1 ∼ i − 1) of all previously seg-
mented patches from the same image. As shown in Fig 2(a), when an Ei is input,
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the EMB reorders itself using a Shortest Distance First (SDF) strategy, and se-
lect the K embeddings closest to Ei to create the shortest distance memory Msd.
Then apply Msd to inject surrounding environmental information into Ei:

Ee
i = Ae(Ei,Msd) (1)

Msd = {Ek | ∀k ∈ {Top-K1(Dij)}, k = 1, . . . ,K1} (2)

Dij =
√
(xi − xj)2 + (yi − yj)2 (3)

where Dij represents the distance between Ei and Ej , in this paper, we calculate
this distance using Euclidean distance. Where (xi, yi) and (xj , yj) are the coor-
dinates of Ei and Ej , and Ae uses one layer of the memory attention network
from SAM2, trained independently.

Finally, the resulting Ee
i is input into Texture Memory Bank for integrating

foreground information. Notably, to maintain the EMB, it is cleared whenever
the image is changed.

Texture Memory Bank: To better provide nucleus features similar to those in
the input Ee

i , along with their corresponding masks. Texture Memory Bank(TMB)
stores the memory embeddings of all previously segmented patches with the max-
imum similarity differences. Inspired by MedSAM2[20], we use the similarity of
image embeddings to measure the similarity of nucleus features, with confidence
incorporated to update the TMB. When a memory embedding Em is to be
enqueued and the TMB is full, first enqueue Em and calculate the similarity
between every pair of embeddings Ei and Ej in the current TMB, resulting in
the similarity matrix Sa:

Sa = {Sij |i ∈ [1,Mt + 1], j ∈ [1,Mt + 1]} (4)
Sij = CosSim(Ei, Ej) (5)

where Sij represents the cosine similarity between Ei and Ej , and Mt is the size
of the TMB.

Then select the embedding Emax whose sum of similarities with other em-
beddings is the largest. If its Intersection over Union(IoU) value minus 0.1 is
smaller than that of Em, Emax will be dequeued. Otherwise, Em will be de-
queued. This strategy enables real-time updates to the TMB, storing reliable
and diverse memory embeddings within it.

Furthermore, as shown in Fig 2(a), when a embedding Ee
i is input, Texture

Memory Bank reorders itsel using a Maximum Similarity First (MSF) strategy,
and selecting the top K embeddings with the highest similarity to Ee

i , forming
the maximum similarity memory Mms. Then apply Mms to inject foreground
information into Ee

i . This process can be expressed as:

Ec
i = Am(Ee

i ,Mms) (6)
Mms = {Em

k |∀k ∈ {Top-K2(Sij)}, k = 1, . . . ,K2} (7)
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where Em
j is the memory embedding stored in the TMB, Sij represents the

cosine similarity between Ee
i and Em

j , and Am is the memory attention module
used in SAM2.

Finally, the resulting Ec
i is passed to the mask decoder to decode the per-

nucleus masks.

2.3 Multilevel Feature Refinement Block

Although Adapter[1] achieves good performance with relatively few parameters,
this fine-tuning strategy may not fully adapt the model to specific domains,
especially in complex scenarios such as pathological images. To address this lim-
ination, we introduce a convolutional branch based on ConvNeXt[10] to extract
domain-specific features from pathological images. Additionally, we designed a
MFRB to facilitate information flow between the two branches. As shown in Fig
2(b), the features from the ViT branch and the convolutional branch at the i-th
layer are denoted as F i

p and F i
d, respectively. First, F i

p undergoes initial fine-
tuning through the Adapter to incorporate domain knowledge. Then, it is used
to refine the domain feature representation in F i

d, generating F i
d
′. Finally, F i

d
′ is

used to update F i
p, complementing it with missing domain features. This process

can be formulated as follows:

F i
d

′
= F i

d +Ac(F
i
d, Adapter(F i

p)) (8)

F i
p

′
= F i

p +Ac(F
i
p, LN(F i

d

′
)) (9)

where LN represents layer normalization, and Ac is the cross-attention.
The resulting F i

p
′ is normalized and then input to the next ViT block for

further refinement, ultimately generating the enhanced image embedding Ei.

3 Experiments

3.1 Datasets and Implementation

To validate the effectiveness of CA-SAM2, we evaluated the model on the MoNu-
Seg[8] dataset from the 2018 MICCAI challenge and the public brain glioma
CPM-17[17] dataset. The MoNuSeg dataset consists of 30 histopathological im-
ages with a resolution of 1000×1000, including both benign and malignant tis-
sue samples from seven different organs: breast, liver, kidney, bladder, prostate,
colon, and stomach. The CPM-17 dataset contains 64 H&E stained images (with
size: 500×500 or 600×600) and includes annotations for 7,570 annotated nuclei.
Both the training and test sets consist of 32 images each.

The experiments were conducted on an NVIDIA V100 GPU, with a patch
size of 256×256, a stride of 164, and the size of the TMB was set to 64. Con-
sidering the influence of input order on contextual representation, we evaluated
four strategies: Row-wise, Zigzag, Spiral inward, and Spiral outward, and used
the best-performing Spiral outward. We also stored the training-time TMB in
checkpoints to provide foreground information from the train set for the test set.
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Table 1. Performance Comparison of SAM-Based Models, SAM2-Based Models and
state-of-the-art Expert Models on the CPM-17 and MoNuSeg Datasets.

Dataset Model Prompt Dice AJI DQ SQ PQ

CPM-17

U-Net [14] (2015) 0.813 0.643 0.778 0.734 0.578
Mask R-CNN [3] (2017) 0.850 0.684 0.848 0.792 0.674
HoVer-Net [2] (2019) 0.878 0.712 0.851 0.808 0.690
SMILE [12] (2023) 0.881 0.723 0.779 0.759 0.705
PointNu-Net [19] (2024) 0.859 0.705 0.872 0.803 0.701
SAM(Zero-Shot) [7] (2023) 0.673 0.458 0.450 0.721 0.340
MedSA [18] (2023) 0.823 0.577 0.740 0.743 0.551
HQ-SAM [6] (2023) 0.742 0.640 0.804 0.795 0.641
CellViT [4] (2024) 0.874 0.711 0.858 0.806 0.693
PromptNucSeg-L [15] (2024) Auto-point 0.870 0.718 0.879 0.812 0.715
SAM2 [13] (2024) One-point 0.826 0.517 0.626 0.738 0.466
MedSAM2 [20] (2024) One-point 0.825 0.519 0.634 0.739 0.472
CA-SAM2 Auto-point 0.881 0.746 0.881 0.819 0.723

MoNuSeg

U-Net [14] (2015) 0.801 0.573 0.666 0.739 0.495
Mask R-CNN [3] (2017) 0.760 0.546 0.521 0.700 0.374
HoVer-Net [2] (2019) 0.803 0.595 0.743 0.754 0.563
SMILE [12] (2023) 0.782 0.576 0.709 0.749 0.533
PointNu-Net [19] (2024) 0.792 0.582 0.754 0.750 0.568
SAM(Zero-Shot) [7] (2023) 0.448 0.188 0.106 0.562 0.069
MedSA [18] (2023) 0.669 0.361 0.359 0.671 0.242
HQ-SAM [6] (2023) 0.663 0.526 0.685 0.759 0.519
CellViT [4] (2024) 0.797 0.584 0.722 0.749 0.543
PromptNucSeg-L [15] (2024) Auto-point 0.804 0.607 0.767 0.758 0.584
SAM2 [13] (2024) One-point 0.732 0.382 0.377 0.673 0.257
MedSAM2 [20] (2024) One-point 0.735 0.394 0.403 0.675 0.276
CA-SAM2 Auto-point 0.810 0.619 0.760 0.759 0.579

3.2 Results

Table 1 compares our method with several state-of-the-art models, including the
Expert model, SAM-based model, and SAM2-based model. In the SAM-based
model, our method exhibits a 0.5% reduction in PQ compared to PromptNuc-
Seg on MoNuSeg. This is due to the relatively dense distribution of nuclei in
MoNuSeg and the fact that the Prompter in PromptNucSeg is independently
trained to generate point prompts, endowing it with more specialized capabili-
ties compared to the convolutional branch in our method. However, in terms of
AJI, our CA-SAM2 outperforms PromptNucSeg by 2.8% and 1.2%, demonstrat-
ing that our method achieves better segmentation results even with suboptimal
point prompts, thereby proving that our module significantly enhances segmen-
tation performance. Compared to the Expert model and the SAM2-based model,
our method performs better on both datasets. Specifically, our AJI improves by
4.1% and 3.7% when compared to the PointNu-Net. Notably, for our CA-SAM2,
SAM2, MedSAM2, and PromptNucSeg architectures, we use Hiera-L and ViT-L
as backbones, while all SAM-based models utilize the ViT-B configuration to
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Fig. 3. Qualitative examples of the MedSAM2, SMILE, PromptNucSeg, our model and
GT.

Table 2. Ablation study of the
proposed modules on the CPM-17
dataset, where TTA stands for test-
time augmentation.

MFRB EMB TMB TTA AJI PQ
0.711 0.687
0.732 0.706
0.736 0.708
0.739 0.712
0.742 0.719
0.746 0.723

Table 3. Ablation experiments on four
backbones of SAM2.

Dataset Model AJI PQ

CPM-17

Hiera-T 0.724 0.702
Hiera-S 0.730 0.707

Hiera-B+ 0.734 0.712
Hiera-L 0.746 0.723

MoNuSeg

Hiera-T 0.597 0.558
Hiera-S 0.596 0.547

Hiera-B+ 0.599 0.549
Hiera-L 0.619 0.579

ensure fairness in the experiments and the accuracy of the performance evalua-
tion.

Fig 3 presents a qualitative comparison of SMILE, PromptNucSeg, Med-
SAM2, and our CA-SAM2 on the CPM-17 dataset, demonstrating that CA-
SAM2 excels in accurately segmenting nuclear instances. Specifically, compared
to SMILE, PromptNucSeg, and MedSAM2, our proposed method shows a accu-
racy detection region on nuclear edges, provides more precise boundary differ-
entiation.

3.3 Ablation Study

We conducted ablation experiments to verify the effectiveness of the proposed
MFRB, EMB, and TMB. For the baseline, we use Hiera-L as the backbone of
SAM2 and remove the memory encoder. As shown in Table 2, each module
significantly enhances the overall performance, and their combination yields the
best overall results.
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Although we freeze the image encoder, in order to compare the performance
differences caused by the pre-trained scale of SAM2, we conducted ablation ex-
periments on different backbones. As shown in Table 3, the segmentation per-
formance of the model gradually decreases as the backbone decreases. However,
even with the use of Hiera-B+, our model remains highly competitive.

4 Conclusion

We propose a SAM2-based context-aware network, CA-SAM2, which enables the
model to incorporate surrounding contextual information during segmentation.
The CIM enhances the context from the background and foreground. Addition-
ally, the MFRB promotes the model adaptation to the pathology image domain
by fine-tuning prior features and integrating domain features. Extensive exper-
iments on the MoNuSeg and CPM-17 datasets demonstrate the effectiveness of
CA-SAM2, achieving promising segmentation results.
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