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Abstract. The integration of neural networks with Magnetic Resonance
Imaging (MRI) data for brain disease diagnosis has become a signifi-
cant research focus. However, the inherent complexity of 3D MRI data
poses challenges for traditional models like CNNs and Transformers,
leading to high computational costs and difficulties in clinical deploy-
ment. Spiking Neural Networks (SNNs), inspired by biological neurons,
offer a promising alternative with enhanced efficiency and robustness.
Yet, their application to MRI data is limited by fixed time-steps that fail
to account for inter-sample variability. To address this, we propose a Vari-
able Time-Step Spiking Neural Network (VT-SNN) that dynamically ad-
justs the time-step based on sample-specific uncertainty. Our method em-
ploys an SNN-based Transformer module to convert MRI data into spike
form and extract features, followed by a variable time-step module that
measures decision uncertainty using Fisher information and PAC-Bayes
theory. Experiments on AHNU and AMRD datasets demonstrate su-
perior classification performance and reduced computational costs. Our
codes are available at https://github.com/UAIBC-Brain/MICCAI-2025-
Paper-VT-SNN.

Keywords: Magnetic Resonance Imaging · Spiking Neural Networks ·
Variable time-step · Uncertainty.

1 Introduction

The application of neural networks to learn representations from Magnetic Reso-
nance Imaging (MRI) scans and utilize these representations for diagnosing brain
diseases has emerged as a prevalent approach in contemporary research [14,15].
Unlike natural images, MRI data are typically three-dimensional and exhibit a

∗ Haonan Rao and Shaolong Wei — Equal first-author contribution.



2 H. Rao et al.

higher degree of complexity [1]. When employing classical convolutional neu-
ral networks (CNNs) or Transformer models to analyze MRI data, the models
become more intricate than those used for traditional natural images. This in-
creased complexity leads to higher computational costs, causing difficulties de-
ploying these models for clinical applications.

Spiking Neural Networks (SNNs) are a novel class of brain-inspired neural
networks modelled after the spiking behaviour and information transmission
of biological neurons [18]. By encoding information via spike sequences, SNNs
achieve significant reductions in energy consumption and enhanced computa-
tional efficiency. Compared to traditional neural networks, SNNs offer advan-
tages such as sparse computation, spatiotemporal integration, and noise robust-
ness [4, 21], thereby alleviating the computational cost issues associated with
conventional models. SNNs have shown broad application potential in various
fields. In computer vision, they are used for tasks like image classification, object
detection, and action recognition [20]. In healthcare, SNNs are applied to brain
disease diagnosis and neural prediction.

Direct application of SNNs to MRI data analysis faces limitations in account-
ing for individual variability in MRI datasets [10]. Traditional SNNs employ a
fixed time-step to enhance the capture of data details and dynamics. However,
MRI data exhibit substantial inter-sample heterogeneity due to noise in data
acquisition and pathological variations in brain diseases. A fixed time-step is not
universally suitable for all samples [5,17]. For instance, smaller time-steps fail to
provide adequate diagnostic information for complex samples, while larger time-
steps increase computational costs and risk overfitting noise in simpler samples,
thereby impairing diagnostic accuracy.

To this end, we propose the variable time-step spiking neural network (VT-
SNN). It is a variable spiking neural network architecture in which each sample
can decide at which time-step to terminate according to its own uncertainty
information. Specifically, we first employ an SNN-based Transformer module
as the main framework of the network to convert MRI data into spike form
and extract features. Subsequently, we design a variable time-step module that
calculates the confidence score. It measures the decision uncertainty for each
sample after each time-step using Fisher information and PAC-Bayes theory
and determines whether to terminate the computation based on these scores.
Our proposed VT-SNN method achieves excellent classification performance and
low computational cost on the AHNU and AMRD datasets.

2 Proposed Method

Our proposed VT-SNN consists of two parts: the SNN-based Transformer mod-
ule and Vthe ariable Time-step module. The SNN-based Transformer module
converts MRI inputs to spike-form data, extracts features from high to low di-
mensions, and reworks the self-attention mechanism with Leaky Integrate-and-
Fire (LIF) neurons. The Variable Time-step module evaluates the output confi-
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Fig. 1. Variable Time-step Spiking Neural Network Based on Uncertainty Measure
(VT-SNN) Overview. The architecture mainly includes the SNN-based Transformer
module and the Variable Time-step module. The SNN-based transformer module con-
sists of an SFP (Spike Feature Patching) and M layers of Spike Encoder. The Variable
Time-step module performs two operations: uncertainty measurement and time-step
selection.

dence score at each step, allowing early inference termination and cost reduction
through conditional early outputs. Details are as follows:

2.1 SNN-based Transformer Module

As shown in Fig. 1, the SNN-based transformer module consists of the Spike
Feature Patching (SFP) and the Spike Encoder. Firstly given an MRI data
In ∈ RT×C×D×H×W , where T represents the time-step (By encoding the MRI
data into T pieces of spike data), C represents the channel dimension (C = 1
for MRI), and D, H, W correspond to the depth, height, and width of the MRI
data respectively, n represents the n-th time-step T . After lightweight 4-layer
SFP, we obtain Xn ∈ RT×N×K . The feature extraction process can be described
as follows:

Xn = MP(SNN (BN(Conv3D(In)))), In ∈ RT×C×D×H×W (1)

After the input passes through the MP, the spike data will be converted into
the float-form. Since SNNs cannot utilize float-form positional embeddings, a
spike-encoded Positional Embedding (SPE), which comprises Conv3D, BN, and
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SNN layers, generates X ′
n. The positional embedding process can be described

as follows:

X ′
n = Xn + SPE, Xn ∈ RT×N×K , X ′

n ∈ RT×N×K (2)

where N represents the product of D, W , H, which is the size of the patch, and
K denotes the dimension after spike feature extraction.

Then we pass the data through an M -layer spike encoder module, which
includes a Spiking Self Attention (SSA) and an MLP block. The SSA computes
attention using a spike dot-product method for the Query (Q), Key (K), and
Value (V ), for details, see the Spike Self Attention in the bold part. Moreover,
we use MLP to generate the preliminary output fn(x) at time-step T=n. The
process of obtaining fn(x) from X ′′

n through the spike encoder is as follows:

X ′′
n = SNN (X ′

n), X ′′
n ∈ RT×N×K , (3)

X ′′′
n = SSA(X ′′

n) +X ′′
n , X ′′′

n ∈ RT×N×K , (4)
fn(x) = MLP(X ′′′

n ) +X ′′′
n , (5)

Spike Self Attention: It is distinct from the traditional method of using
softmax in self-attention. For the input X ′′

n ∈ RT×N×K , we first compute
its Q, K, V separately (Q = SNNQ(BN(XWQ)), K = SNNK(BN(XWK)),
V = SNN V (BN(XWV )), where Q,K, V ∈ RT×N×K), and then calculate the
attention of X using a spike dot-product method, enabling X to encompass spa-
tial structural information ranging from local to global scales. Subsequently, this
is processed through an SNN . The SSA operations are as follows:

SSA′(Q,K, V ) = SNN
(
QKT V

)
, (6)

SSA(Q,K, V ) = BN(Linear(SSA′(Q,K, V ))), (7)

2.2 Variable Time-step Module

If we only use the SNN-based Transformer, the process will be repeated T times
to obtain the final result, resulting in high computational costs. So, we designed
a variable time-step module, which performs two operations: uncertainty mea-
surement and time-step selection.
Uncertainty Measurement: The data uncertainty caused by the differences
among different samples will lead to the uncertainty of the model’s output re-
sults [11,16]. Therefore, we adopt reliable uncertainty decision-making to provide
a more reliable confidence score.

As the amount of information carried by different MRI samples varies, lead-
ing to varying amounts of information carried by the classification probability
p. So we propose using a Fisher Information-based evidential network as an Un-
certainty Decision-Making to measure the information carried by the MRI clas-
sification probability p regarding the concentration parameter α of the Dirichlet
distribution. We first define a Fisher Information Matrix (FIM) based on the
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Dirichlet distribution by taking the expected value of the second-order deriva-
tives of the log-likelihood function:

I(α) = EDir(p|α)

[
∂ℓ

∂α

∂ℓ

∂αT

]
, (8)

where p represents the classification probability, a represents the concentration
parameter, and ℓ = logDir(p | α) represents the amount of information con-
tained in the likelihood function. After introducing Fisher information and going
through a series of derivations [3], it can be expressed as:

I(α) = diag
(
[ψ(1)(α1), · · · , ψ(1)(αK)]

)
− ψ(1)(α0)11

T , (9)

where ψ(1)(x) = dψ(x)
dx = d2 lnΓ (x)

dx2 represents the second derivative of the gamma
function. Ultimately, we can obtain the target variable Yn ∼ N (pn, σ

2I(αn)−1),
where αn = fn(x)+1, pn ∼ Dir(αn), after incorporating the Fisher Information
matrix.

In the case where the time-step T = n, then we can obtain the loss function,
which consists of the MSE, the Kullback-Leibler (KL) divergence term, and the
Fisher Information term. Ultimately, the Uncertainty Decision-Making is inte-
grated through learning using the PAC-Bayesian bound [7, 9]. By introducing
appropriate prior and posterior distributions, we can better utilize the comple-
mentary information in the data and enhance the model’s generalization ability.
We have integrated our loss function according to the PAC-Bayesian theory. Ul-
timately, we obtain the following formula for the Uncertainty Decision-Making:

min
θ

1

P

P∑
i=1

LI·MSE
i − λ1L|I|

i + λ2LKL
i , (10)

where LI−MSE
i =

∑K
j=1

[(
Yij−

αij

αi0

)2
+
αij(αi0−αij)

α2
i0(αi0+1)

]
ψ(1)(αij), L|I|

i =
∑K

j=1logψ
(1)(αij)+

log

(
1−
∑K

j=1

ψ(1)(αi0)

ψ(1)(αij)

)
, LKL

i =logΓ
(∑K

i=1 α̂ij

)
−logΓ (K)−

∑K
j=1 logΓ (α̂ij)+

∑K
i=1(α̂ij−

1)
[
ψ(α̂ij)−ψ

(∑K
k=1 α̂ik

)]
.

In order to ensure that the concentration parameters are not negative in the
Dirichlet distribution, we use αi = fi(x) + 1, we set α̂i = αi · (1 − Yi) + Yi to
remove the predicted concentration parameter of the true label corresponding to
the sample x, αij represents the concentration parameters of the j-th category of
the i-th sample calculated by the model. αi0 represents the sum of all categories
of the i-th sample. We set λ1, λ2 ≥ 0. The penalty term composed of Li|I|

and LiKL can avoid overconfidence caused by overfitting. The weighted term of
the Fisher Information Matrix can adaptively adjust the weights of other terms
based on the uncertainty information contained in different classes of different
samples.

Then we adopt the confidence score as the criterion for the uncertainty as-
sessment of MRI samples. The formula for the confidence score is as follows:

Sn = max(softmax(fn(x))) (11)
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where fn(x) denotes the preliminary output at time T=n and Sn represents the
confidence score at time T=n, which is the maximum value of the probability
distribution of the preliminary output after softmax processing.
Time-step Selection: We select the time-step according to these confidence
scores. Specifically, for these scores, it is necessary to set a threshold Sn to make
a judgment on the uncertain results output by the model. The specific operation
is as follows: Based on the confidence score Sn, we can decide when to output
the final result by checking if Sn at time T = n exceeds the threshold Sth. We
set the maximum time-steps to 4. Starting from T = 1, if the condition isn’t
met, we increment T by 1 and recheck until the condition is satisfied or T = 4.
In brief, when Sn > Sth, the model will output the final result.

3 Experiments

3.1 Subjects and Data Preprocessing

This study used two sMRI datasets: a dataset of 1410 cases from the Decoded
Neurofeedback Project organized by the Japan Agency for Medical Research and
Development (AMRD) [19], covering multiple mental disorders (MMD), and a
Parkinson’s disease (PD) dataset of 300 cases from the Affiliated Hospital of
Nantong University (AHNU). Both datasets were linearly registered to standard
templates via FSL, followed by AC-PC alignment, skull stripping, and removal
of extraneous structures. Incomplete scan images were systematically excluded
to ensure data quality.

Table 1. Five models are compared on AHNU and AMRD Datasets. Power is the
average hardware consumption per unit time during the test. Time-step is the setting
of the snn inference process, as well as Acc, Sen, Spe and F1 scores.

Dataset Method Power(mJ) Time-step Acc(%) Sen(%) Spe(%) F1(%)

AHNU

ResNet3D 49.8 – 76.3 71.2 78.2 73.4
Sfcn 29.8 – 78.5 74.1 83.1 77.6
SEW ResNet 25.2 4 74.3 81.3 66.1 76.4
Spikformer 27.4 4 78.3 75.2 78.7 76.6
Spike-driven Transformer 26 4 80.2 82 62.2 80.4
Ours 12.7 1.7 84.3 84.2 84.2 83.4

AMRD

ResNet3D 48.2 – 71.6 67.2 75.4 69.4
Sfcn 26.9 – 73.3 67.4 79.6 71.2
SEW ResNet 26.8 4 67.3 73.1 61.6 65.4
Spikformer 27.6 4 71.6 69.8 72.4 70.8
Spike-driven Transformer 26.4 4 74.6 80.2 68.4 72.4
Ours 13.6 1.9 77.3 75.8 80.6 77.2

3.2 Experimental Setup

All experiments utilized five-fold cross-validation with 350 epochs, batch size 15,
and initial learning rate 0.001 optimized via cosine annealing scheduler (decay
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rate 0.01). We evaluated classification results of AHNU and AMRD datasets,
assessing performance through time-step, power, accuracy (ACC), sensitivity
(SEN), specificity (SPE), and F1 score.

For comparative experiments, we employed two ANNs (ResNet3D [8] and
SFCN [13]) and three SNNs (SEW-ResNet [6], Spikformer [23], and Spike-Driven
Transformer [22]) as baseline models.

3.3 Classification Performance

In the AHNU and AMRD datasets, the experimental performance of each method
is shown in Table 1. Our proposed method achieved the best results across all
evaluation metrics. Specifically, in the AHNU dataset, our VT-SNN method
achieved an accuracy (ACC) of 84.3% for PD recognition, outperforming the
Spike-Driven Transformer (80.2%) and other methods (all below 80%). In other
metrics, VT-SNN improved sensitivity (SEN) by 2%-13%, with similar gains
in specificity (SPE) and F1 score. In the AMRD dataset, VT-SNN maintained
superior performance across all metrics. Overall, our method significantly out-
performed others in brain disease identification.

3.4 Spike Activation Visualization Analysis

In Fig. 2, brain region structures in MRI are represented by spike form. AMRD
shows the activated brain regions of MMD, with the highest spike intensity in the
prefrontal region, followed by the parietal and occipital lobes. AHNU represents
the spike activation regions of PD, located near the substantia nigra. Compared
to previous studies, our results demonstrate equivalent effectiveness [2, 12].

Fig. 2. The visualization of the results of VT-SNN in using spike representations to
indicate the pathological locations for the classification of MMD and PD. Black dots
denote unactivated regions, while bright dots signify spike-activated regions, which are
employed to identify the pathological locations of diseases.
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3.5 Latency and Hardware Power Consumption

We used CPUID HWMonitor Pro to measure the computational energy con-
sumption of our method and baseline models. As shown in Table 1, our model
achieves time-steps of no more than 2, reducing latency by over 50% compared
to other SNN models, while consuming 52% to 73% less power. These results
demonstrate that VT-SNN significantly lowers training costs through optimized
computational resource utilization compared to conventional ANN and SNN
models. Fig. 3 (b) shows the time-step size distribution for the AMRD and
AHNU datasets. In AMRD, nearly 50% of samples have time-steps at T=1,
with proportions decreasing as T increases: T=2 and T=3 each account for
about 20%, and T=4 has the smallest share. AHNU follows a similar trend but
with a higher proportion at T=1 (close to 60%) and less than 10% at T=4.

3.6 Ablation Study

Fig. 3 shows ablation studies on the AHNU dataset demonstrate that fixed
time-step models achieve suboptimal accuracy (ACC < 80% at T=4), while the
variable time-step mechanism in VT-SNN significantly improves performance
(ACC > 84% with maximum T<2). Increasing the confidence score threshold
Sth from 0.6 to 0.9 correlates with a rising time-step T and continuous ACC
enhancement, validating the reliability of the confidence score generated by the
variable time-step module. Similar trends are confirmed on the AMRD dataset.

Fig. 3. (a) Accuracy vs. Time-step, where SNN baselines show degraded performance
without variable time-steps, contrasted with VT-SNN’s threshold-controlled progres-
sion (The red square: 0.6-0.9 thresholds). (b) Time-step distributions across datasets.
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4 Conclusion

In this study, we propose VT-SNN, an adaptive early-stopping spiking neural
network that dynamically selects optimal temporal steps based on model con-
fidence score to achieve efficient inference. To enhance model reliability, we in-
corporate an uncertainty estimation module grounded in PAC-Bayesian theory,
thereby improving generalization capabilities. When applied to auxiliary diag-
nosis of neurological disorders, our VT-SNN framework demonstrated a balance
between high diagnostic accuracy and low computational latency.
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