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Abstract. Semi-supervised learning (SSL) has emerged as an effective
approach to reduce reliance on expensive labeled data by leveraging large
amounts of unlabeled data. However, existing SSL methods predomi-
nantly focus on visual data in isolation. Although text-enhanced SSL
approaches integrate supplementary textual information, they still treat
image-text pairs independently. In this paper, we explore the potential
of jointly learning from related text-image datasets to further advance
the capabilities of SSL. To this end, we introduce a novel text-enhanced
Mixture-of-Experts (MoE) model, augmented with textual information,
for semi-supervised medical image segmentation (TextMoE). TextMoE
incorporates a universal vision encoder and a text-assisted MoE (TMoE)
decoder, enabling it to simultaneously process CT-text and X-Ray-text
data within a unified framework. To achieve effective knowledge in-
tegration from heterogeneous unlabeled data, a content regularization
with frequency space exchange is designed, guiding TextMoE to learn
modality-invariant representations. Additionally, the proposed TMoE de-
coder is enhanced by modality indicators, securing the effective fusion
of visual and textual features. Finally, a differential loss is introduced to
diversify the semantic understanding between visual experts, ensuring
complementary insights to the overall interpretation. Experiments con-
ducted on two public datasets indicate that TextMoE outperforms SSL
and text-assisted SSL methods, achieving superior performance. Code is
available at: https://github.com/jgfiuuuu/TextMoE.
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Fig. 1. Illustration of existing SSL paradigms: (a) Conventional SSL using only visual
data; (b) Text-enhanced SSL; (c) Proposed SSL approach using joint CT-text and X-
Ray-text datasets within a unified framework.

1 Introduction

Medical image segmentation plays a critical role in healthcare, assisting clinicians
in accurately diagnosing and treating various conditions [28,4,27]. Traditional
fully-supervised methods, while effective, face significant challenges in medical
imaging due to the high cost and scarcity of labeled data. To address this,
semi-supervised learning (SSL) has emerged as a promising approach [19,14,26].
SSL combines a small amount of labeled data with abundant unlabeled data,
improving model performance and generalization. This approach is particularly
relevant in medical imaging, where expert annotations are both time-consuming
and expensive to obtain [5,6]. Established SSL techniques, such as consistency
regularization [1,25,22] and pseudo-labeling [16,23], have been shown to enhance
the segmentation accuracy of models across diverse clinical applications.

Despite these advancements, traditional SSL methods face several limita-
tions. First, they typically rely on visual data alone [16,25] (see Fig. 1 (a)), which
can miss crucial semantic details necessary for accurate segmentation. Second,
they often struggle to generalize across different medical imaging modalities, re-
sulting in suboptimal performance when applied to multi-source datasets [24].
Third, they underutilize the contextual information available in unlabeled data.
Recent studies have explored text-enhanced SSL approaches [12,21,9], which
integrate clinical notes and reports, providing richer semantic guidance that im-
proves outcomes, particularly when dealing with diverse medical data.

The focus of existing text-enhanced SSL methods has been on two main ob-
jectives: (1) effectively combining textual and visual features to generate more
accurate pseudo-labels, and (2) aligning image and text representations in a
shared latent space for efficient feature integration. Key approaches include fine-
grained pixel-word attention modules [8,20], which establish precise mappings
between image regions and corresponding text segments, and cross-modal con-
trastive learning [17,21], which enhances the alignment of visual and textual
features by maximizing the similarity of shared representations. Additionally,
text-guided pseudo-label generation [12,9] has been used to generate more reli-
able pseudo-labels, improving the quality of the training signals for segmentation
tasks from textual data. However, these methods typically treat paired image-
text datasets independently, e.g., training separate SSL models for each modality,
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such as one for CT images and another for X-ray images (see Fig. 1 (b)). Given
the correlation in imaging principles across modalities, such as CT and X-ray, we
propose a novel approach that leverages these related text-image datasets within
a single model to further enhance text-assisted SSL (see Fig. 1 (c)). To achieve
this, we address two main challenges: (1) how to represent visual features from
heterogeneous unlabeled data with textual guidance, requiring SSL models to
handle variability in both visual and textual data and learn modality-invariant
representations that capture essential semantic information across different data
sources, and (2) how to resolve conflicts between modalities to ensure effective
knowledge sharing. Although CT and X-ray share similar imaging principles,
they can yield conflicting information due to differences in characteristics such
as contrast and noise.

In this paper, we propose a novel text-enhanced Mixture-of-Experts (MoE)
model, TextMoE, which jointly processes mixed CT-text and X-ray-text data
within a unified framework for semi-supervised medical image segmentation.
The TextMoE framework consists of a teacher and a student model, each com-
prising a universal vision encoder and a text-assisted MoE (TMoE) decoder.
To mitigate modality conflict between CT and X-ray images, we introduce a
content regularization loss that improves visual content understanding. This is
achieved by swapping the frequency space of randomly selected unlabeled data,
thereby enhancing robustness to modality-specific variations and refining feature
representations. Furthermore, the TMoE decoder, aided by modality indicators,
enables the seamless integration of visual and textual features. Finally, a differ-
ential loss is introduced to encourage diverse interpretations among the experts,
further enriching semantic understanding.

The key contributions of this work are three-fold: (1) we propose TextMoE,
a unified text-enhanced SSL framework capable of concurrently processing CT-
text and X-ray-text data; (2) we address modality conflicts by devising a content-
based loss and a modality indicator-based MoE architecture; and (3) extensive
experiments and ablation studies demonstrate the superiority of our framework.

2 Method

2.1 Preliminaries

We construct a labeled dataset Dl = {(xl
i, t

l
i, y

l
i)}

Nl
i=1 and an unlabeled dataset

Du = {(xu
i , t

u
i )}

Nu
i=1, where xl

i and xu
i represent the i-th labeled and unlabeled

images, respectively. The corresponding textual descriptions are denoted by tli
and tui , while yli is the ground truth label for xl

i. Note that Nl and Nu indicate
the total number of labeled and unlabeled data.

As shown in Fig. 2, the proposed TextMoE model is built upon the mean-
teacher framework [18], with both the teacher and student models following
a U-Net-like architecture [15]. Unlike conventional SSL and text-enhanced ap-
proaches, our TextMoE collaboratively learns from heterogeneous datasets using
a unified model. The model consists of a universal vision encoder f(·; θv) and
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Fig. 2. Illustration of our TextMoE framework. To mitigate modality conflict, we in-
troduce a content regularization loss Lcr based on frequency space exchange when
processing unlabeled data. To effectively adapt feature representations, we design a
TMoE decoder with a modality indicator to discern the type of data being processed.
Our TextMoE is built upon the mean-teacher framework.

a TMoE decoder f(·; θtmoe). Additionally, a text encoder f(·; θtext) is used to
extract textual knowledge. We now delve into the details of TextMoE.

2.2 Architecture of TextMoE

The core design of TextMoE lies in its TMoE decoder f(·; θtmoe), which com-
prises three experts: f(·; θexp_t), f(·; θexp_v1) and f(·; θexp_v2), each specializ-
ing in textual knowledge and visual semantic understanding. A gating network,
augmented by a modality indicator, dynamically integrates the outputs of these
experts by assigning adaptive weights for fusion. Since the forward process for
labeled and unlabeled data is identical, we omit subscripts i, l, and u for clarity.
Text-guided Visual Feature Integration. Given an image x (from CT or
X-Ray modalities), the general visual features featv are produced by the vision
encoder f(x; θv), while the associated textual features featt are obtained from
the text encoder f(t; θtext). Unlike typical MoE models, which integrate both
visual and textual features uniformly, i.e., integrating concurrently both visual
and textual features during the forward pass to produce the outcomes [11], we
propose employing textual features to guide the visual semantic understanding,
and then fusing the enhanced visual features only. This design is motivated
by the observation that segmentation outcomes are primarily determined by
visual input, with textual data providing supplementary context. Accordingly,
the above process can be formalized as:

featexp
v1 = f(featv; θexp_v1), featexp

v2 = f(featv; θexp_v2), (1)

where featexp
v1 and featexp

v2 are visual features processed by the respective vi-
sual experts. The textual features featt are passed through the text expert
f(featt; θexp_t) to generate featexp

t . Two groups of text-enhanced visual features
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are then computed as:

featexp
v1,t = AttnT2V (featexp

v1 , featexp
t , featexp

t ),

featexp
v2,t = AttnT2V (featexp

v2 , featexp
t , featexp

t ),

AttnT2V (Q,K, V ) = softmax
(
QKT

√
dk

)
V,

(2)

where featexp
v1,t and featexp

v2,t are the improved visual features. AttnT2V (·) follows a
standard cross-attention operation mechanism. The two sets of enhanced visual
features are then fused using a gating network f(·; θg).
Weights Assignment with Modality Indicator. To address the modality-
specific variations between CT and X-Ray images, we introduce a one-hot modal-
ity indicator, which is concatenated with the visual features to generate gating
weights. These weights determine the contribution of each expert to the final
feature representation. The weight computation is given by:

{weightv1 ,weightv2} = f(featv, [Indicator]; θg), (3)

where the gating weights {weightv1 ,weightv2} are normalized using the SoftMax
function. The final output within a TMoE block is a weighted combination of
the enhanced visual features:

featexp
v1,v2,t = weightv1 × featexp

v1,t + weightv2 × featexp
v2,t. (4)

Similarly, the refined visual features featexp
v1,v2,t and txtual features featexp

t are
then passed to the next block for further processing.

2.3 Content Regularization based on Frequency Space Exchange

In this section, we describe the learning process for labeled and unlabeled data.
For labeled data, the standard supervised loss is computed as:

Lsup =
1

Nl

Nl∑
i=1

L(f(featli,v, featli,t; θtmoe), y
l
i) (5)

where featli,v = f(xl
i; θv), featli,t = f(tli; θtext), and L(·) represents a combi-

nation of Dice and Cross-Entropy losses. To address the challenges associated
with heterogeneous data sources, we propose exchanging the frequency space
between randomly selected unlabeled images. The original image is processed
by the teacher model to generate pseudo-labels, while the exchanged image is
processed by the student model. This strategy improves robustness to modality-
specific variations and enhances the model’s understanding of both CT and X-ray
content. The frequency exchange operation is given by:

xu
i,f = F−1(F(xu

j )), (6)
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where F denotes the Fourier Transformation, F−1 stands for the Inverse Fourier
Transformation, and xu

i,f represents the exchanged image, which combines the
content of xu

i with the style of xu
j from a different modality. The content regu-

larization loss Lcr is applied to the unlabeled data, as follows:

Lcr =
1

Nu

Nu∑
i=1

L(f(featui,v,f , featui,t; θtmoe), ŷ
u
i ) (7)

where featui,v,f = f(xu
i,f ; θv), featui,t = f(tui ; θtext), and ŷui is the pseudo-label

generated by the teacher model. The teacher is updated using an exponential
moving average of the student with a momentum of 0.99.

2.4 Differentiated Semantic Understanding between Experts

To ensure diverse interpretations of the input image, we introduce a differentiated
loss Ldiff, which is applied to the outputs of the visual experts. The loss is
formulated as:

Ldiff =
1

N

N∑
i=1

∥featexp
v1 · featexp

v2 ∥2
∥featexp

v1 ∥2 · ∥featexp
v2 ∥2

(8)

where N = Nl + Nu. This loss encourages the visual experts to learn distinct,
complementary representations of the input data. So far, the objective function
of our TextMoE consists of three losses, formulated as:

Ltotal = Lsup + Lcr + Ldiff. (9)

As for inference, given a test image with associated text data, only the student
model is used, with a text encoder providing supplemental textual knowledge.

3 Experiments and Results

3.1 Datasets and Implementation Details

Datasets and Metrics. We evaluated our method using two public datasets.
The MosMedData+ dataset [7] consists of 2,729 CT scan slices for lung infec-
tions, while the QaTa-COV19 dataset [3] includes 9,258 COVID-19 Chest X-Ray
images. Both datasets provide text descriptions detailing the number and loca-
tion of infected areas, as outlined in [9]. To ensure fair comparison with existing
methods, we used the same data splits as in [9,12]. Specifically, MosMedData+
was divided into 2,183 training, 273 validation, and 273 test images, QaTa-
COV19 was split into 5,716 training, 1,429 validation, and 2,113 test images.
25% and 50% labels were considered, with Dice and mIoU evaluation metrics.
Implementation Details. Our model was trained using the AdamW optimizer
with an input size of 224×224. A cosine annealing learning rate schedule was
employed, starting at 3e-4 and gradually decreasing to a minimum of 1e-6. Con-
vNeXt [10] and CXR-BERT [2] were employed as the vision and text encoders.
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Table 1. Comparisons on the QaTa-COV19 and MosMedData+ datasets, under label
percentages of 25% and 50%. The most right presets the averaged Dice and mIoU scores.
The best and second-best results are highlighted in bold and underline, respectively.

Dateset Method Modality 25% 50% Avg. Results
Dice (%) mIoU (%) Dice (%) mIoU (%) Dice (%) mIoU (%)

QaTa
-COV19

UCMT I 76.09 64.13 77.81 68.65 76.95 66.39
BCP I 74.79 65.26 75.57 65.31 75.18 65.29

LeFeD I 78.15 67.12 78.19 69.21 78.17 68.16
LAVT I+T 77.08 67.21 79.10 70.88 78.09 69.05
LViT I+T 78.12 66.75 80.32 72.16 79.22 69.46

CPAM I+T 80.21 70.59 82.08 74.12 81.15 72.36
DuSSS I+T 79.00 68.21 82.52 75.87 80.76 72.04
Ours I+T 88.61 79.55 89.55 81.08 89.08 80.32

MosMed
Data+

UCMT I 68.73 52.86 70.80 55.09 69.76 53.97
BCP I 69.56 53.42 71.38 55.76 70.47 54.59

LeFeD I 70.72 54.50 72.06 56.21 71.39 55.36
LAVT I+T 71.02 54.73 72.11 56.29 71.57 55.51
LViT I+T 71.38 54.82 72.25 56.33 71.82 55.58

CPAM I+T 71.62 55.08 72.37 56.47 72.01 55.78
DuSSS I+T 72.39 55.60 73.18 57.32 72.79 56.46
Ours I+T 74.15 58.92 75.17 60.22 74.66 59.57

Data augmentation techniques, including random resizing and cropping, were ap-
plied. To prevent overfitting, we incorporated an early stopping mechanism. To
address the disparity in data sizes between QaTa-COV19 and MosMedData+,
over-sampling was performed to balance the data. All experiments were con-
ducted using PyTorch [13] on a single NVIDIA 3080Ti GPU.

3.2 Comparisons and Ablations

Results Analysis. Table 1 presents the model performance at label percent-
ages of 25% and 50%, including comparisons with advanced SSL approaches
(UCMT [16], BCP [1], LeFeD [25]) and text-enhanced SSL methods (LAVT [20],
LViT [9], CPAM [8], DuSSS [12]). Based on the results, three primary obser-
vations can be made: (1) Our TextMoE consistently outperforms all other ap-
proaches in both Dice and mIoU scores across both datasets, particularly at lower
labeled data percentages. This highlights the superiority of our method in con-
currently leveraging limited image-text data from heterogeneous sources, making
it available for clinical applications. (2) TextMoE shows higher performance gains
on the QaTa-COV19 dataset (X-Ray) compared to the MosMedData+ dataset
(CT). We attribute this to the more homogeneous nature of X-Ray images, which
may make them more conducive to multimodal integration. In contrast, the CT
images in MosMedData+ are more complex, requiring more nuanced modeling
to handle their diverse and detailed structures. (3) Visualizations in Fig. 3 fur-
ther demonstrate the efficacy of TextMoE in establishing seamless connections
between image and text, highlighting its ability to integrate multimodal infor.
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Table 2. Ablation studies on two datasets with label percentages of 25% and 50%.
The right column displays the average gains compared to the baseline.

Setup Lsup Plain- TMoE Lcr Ldiff
QaTa-COV19 MosMedData+ Avg. gain ∆

MoE [11] Dice (%) mIoU (%) Dice (%) mIoU (%) Dice (%) mIoU (%)

25%

✓ × × × × 77.88 67.53 67.55 50.99 - -
✓ ✓ × × × 84.54 74.74 68.48 52.07 + 3.80 + 4.15
✓ × ✓ × × 85.63 74.87 70.72 54.70 + 5.46 + 5.53
✓ × ✓ ✓ × 87.59 77.92 72.60 56.99 + 7.38 + 8.20
✓ × ✓ ✓ ✓ 88.61 79.55 74.15 58.92 + 8.85 + 9.98

50%

✓ × × × × 79.64 71.88 69.27 52.99 - -
✓ ✓ × × × 87.23 77.35 70.91 54.94 + 4.62 + 3.71
✓ × ✓ × × 87.66 78.02 71.86 56.08 + 5.31 + 4.62
✓ × ✓ ✓ × 88.60 79.53 73.00 57.49 + 6.35 + 6.08
✓ × ✓ ✓ ✓ 89.55 81.08 75.17 60.22 + 7.91 + 7.07
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Fig. 3. Visualization analysis. The left side displays the segmentation results, while the
right side highlights key features along with their corresponding textual descriptions.

Ablation Study. Table 2 presents the results for five configurations: (1) the
baseline model with labeled supervision Lsup only; (2) using both labeled and
unlabeled data with Plain-MoE, which fuses visual and textual features element-
wise; (3) replacing Plain-MoE with our TMoE, which enhances visual features
using text cues and fuses the enhanced visual features solely; (4) substituting the
naive unsupervised teacher-student loss with our content regularization loss Lcr;
and (5) incorporating the differentiated semantic understanding loss Ldiff to fur-
ther diversify the knowledge learned from experts. As an example, with 25% la-
beled data, incorporating Plain-MoE already yields results on the QaTa-COV19
dataset that outperform both competing SSL and text-enhanced SSL methods,
highlighting the importance of integrating data sources, especially when labels
are limited. Replacing Plain-MoE with our TMoE leads to significant improve-
ments on the MosMedData+ dataset, validating the efficacy of our MoE design
for handling composite data. Furthermore, introducing Lcr to mitigate modal-
ity conflicts between CT and X-Ray results in notable improvements on both
datasets, demonstrating the effectiveness of our content understanding approach.
Finally, by diversifying semantics between visual experts using Ldiff, the gains
achieved by TextMoE are further enhanced.
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4 Conclusion

In this paper, we introduce a novel text-enhanced SSL model, TextMoE, designed
to jointly process multiple image-text datasets within a unified framework. To ef-
fectively extract information from unlabeled data and resolve modality conflicts
between CT and X-Ray images, we propose a content regularization technique
based on frequency space exchange. To integrate complementary textual knowl-
edge, we design a TMoE decoder with modality indicators, enhancing the fusion
of visual and textual features for improving the visual semantics. Furthermore,
we introduce a differential loss to promote diverse interpretations among visual
experts, securing variability in the learned representations.
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