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Abstract. The Diffusion Probabilistic Model (DPM) has demonstrated
remarkable performance across a variety of generative tasks. The inherent
randomness in diffusion models helps address issues such as blurring
at the edges of medical images and labels, positioning Diffusion Proba-
bilistic Models (DPMs) as a promising approach for lesion segmentation.
However, we find that the current training and inference strategies of
diffusion models result in an uneven distribution of attention across differ-
ent timesteps, leading to longer training times and suboptimal solutions.
To this end, we propose UniSegDiff, a novel diffusion model framework
designed to address lesion segmentation in a unified manner across multi-
ple modalities and organs. This framework introduces a staged training
and inference approach, dynamically adjusting the prediction targets at
different stages, forcing the model to maintain high attention across all
timesteps, and achieves unified lesion segmentation through pre-training
the feature extraction network for segmentation. We evaluate performance
on six different organs across various imaging modalities. Comprehensive
experimental results demonstrate that UniSegDiff significantly outper-
forms previous state-of-the-art (SOTA) approaches. The code is available
at https://github.com/HUYILONG-Z/UniSegDiff.

Keywords: Diffusion model - Unified Lesion Segmentation - Staged
training and inference.

1 Introduction

Lesion segmentation is a critical task in medical image analysis. However, existing
neural network models are typically designed for specific imaging modalities and
lesion tasks [13,31, 30, 21|, which limits their broader applicability. Therefore,
developing a unified model capable of handling multiple imaging modalities and
lesion types is essential. In medical imaging, boundary ambiguity often arises in
both images and labels [17]. To address this, we use Diffusion Probabilistic Models
(DPMs) [9] for medical lesion segmentation, as they incorporate randomness in
modeling and can capture complex distributions. However, we observed that
directly applying diffusion models to lesion segmentation tasks leads to longer
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convergence times, inference times, and suboptimal results, due to the uneven
attention distribution across different timesteps. Through an in-depth analysis of
the characteristics exhibited by diffusion models during training, we identified
the root cause of the issue and developed a targeted staged diffusion framework,
which was then applied to unified lesion segmentation.

When diffusion models are applied to segmentation tasks, they typically
consist of two parts: the conditional feature extraction network and the denoising
network [3]. The former encodes the image into conditional features to guide
the latter in denoising training. The training and inference process is described
as a Markov chain consisting of T" timesteps. As ¢ increases, the original mask
xo is gradually corrupted by noise € until it becomes pure Gaussian noise. The
denoising network learns the ability to generate reconstructions by predicting € or
xo from the noisy mask x;. Our observations indicate that predicting e requires
more training time to converge compared to predicting xg. This is because, when
the prediction target is €, the model finds it easier to learn the distribution
of noise from noisy masks z; at larger timesteps than from those at smaller
timesteps. As a result, the model tends to focus more on the latter (low-noise
xt). However, during inference, the model starts with pure Gaussian noise at
the highest timestep and gradually denoises. The steps with larger timesteps are
crucial in shaping the basic structure of the segmentation mask, which requires
additional training for the model to converge at higher-noise timesteps. When the
prediction target is g, the model tends to focus more on noisy masks at larger
timesteps. Although the model can converge more quickly, it fails to model the
noisy masks at smaller timesteps adequately, leading to poor performance. The
upper-left part of Figure 1 shows the average gradient distribution of the model
across timesteps for different prediction targets, where higher values indicate
greater attention from the model during that phase.

Moreover, applying diffusion models to unified lesion segmentation introduces
new challenges. Different lesion images vary greatly in imaging modalities, lesion
morphology, and other aspects, while the masks are simple binary images. This
causes inevitable confusion of features from different lesions when using the lesion
images as conditional guidance for denoising, leading to a mismatch between the
conditional features and the denoising features.

To address these challenges, we propose a new framework called UniSegDiff.
First, we divide different timesteps into three stages and dynamically set pre-
diction targets: the Rapid Segmentation Stage (predicting x), the Probabilistic
Modeling Stage (predicting both xg and €), and the Denoising Refinement Stage
(predicting €), ensuring the model maintains high attention across all timesteps.
Next, the conditional feature extraction network is pre-trained for segmentation
on the unified lesion dataset and frozen during denoising training. This trans-
forms lesion images from different modalities into distributions similar to the
masks, reducing feature confusion between different lesions and better utilizing
the conditional features to guide denoising. Finally, to fully leverage the inherent
randomness modeled by the diffusion model, we use staged inference to quickly
generate multiple segmentation results for fusion, obtaining the optimal solution.
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Our UniSegDiff achieves state-of-the-art performance on six lesion segmentation
tasks across different modalities, as well as on the unified lesion segmentation
task composed of these datasets.
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Fig. 1: The top-left corner shows the relationship between the model’s average
gradient and timestep for different targets. (A) Pre-Training and (B) Stage-
Training represent the training process of UniSegDiff, while (C) Staged-Inference
and (D) Uncertainty Fusion illustrate the inference process. NS denotes Noise
Schedule, FF stands for Features Fusion, DCA refers to Dual Cross Attention,
and CF, DF represent Conditional Feature and Denoising Feature, respectively.

2 Approach

2.1 Overall Architecture

The focus of this paper is on designing a diffusion framework for unified lesion
segmentation, so our model architecture is kept simple, as shown in Figure 1. It
consists of 2.5 UNet networks and a features fusion module. One UNet serves
as the conditional feature extraction network (CFENet), while the remaining
UNets function as the denoising network (DNet). During a single training step,
CFENet extracts conditional features CF; (i = 1 ~ 5) from the input images.
The encoder of DNet takes the noisy masks z;, added by the noise scheduler, as
input and progressively receives C'F; as conditional guidance. Finally, the two
decoders of DNet separately learn to model the € and the zg.
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2.2 Train and Infer Stage

UniSegDiff divide the training process into three stages, each with distinct
primary prediction objectives designed to ensure the neural network maintains
high attention throughout all training steps. As shown in part (B) of Figure 1,
in the Rapid Segmentation Stage (599 < t), the primary prediction target is the
original mask xq, as predicting the noise ¢ distribution is much simpler than
predicting the original mask x( at this stage. Additionally, since the distribution
difference of noisy masks x; at different time steps is minimal during this phase,
all time steps are set to the maximum value (¢ = 999). Surprisingly, this not
only accelerated the convergence speed but also improved segmentation accuracy.
In the Probabilistic Modeling Stage (299 < ¢t < 599), the noise and mask
information are more balanced, allowing the diffusion model to fully utilize its
learning capability. At this stage, both prediction targets are given equal weight.
In the Denoising Refinement Stage (¢t < 299), the primary prediction target is
the noise e. Similar to the Rapid Segmentation Stage, the distribution difference
of noisy masks x; at different time steps is minimal, so all time steps are set to
the minimum value (¢ = 0). The loss function of UniSegDiff is as follows:

Ltotul = (Xﬁn + 6(£dice + £ce)~ (1)

The loss function consists of the noise prediction loss (£n) and the original mask
prediction loss (Ldice + L..), weighted accordingly. The weight coefficients o and
B are dynamically adjusted across different stages: in the Rapid Segmentation
Stage (a: 8 = 1:3), the Probabilistic Modeling Stage (o : 8 = 1: 1), and the
Denoising Refinement Stage (a: § = 3 : 1). This dynamic weighting scheme is
consistent with our staged training approach.

The inference process is shown in part (C) of Figure 1, the initial time step
of DNet is set to t = 999, with the input Xgg9 being pure Gaussian noise. After
obtaining the conditional features C'F; from CFENet, the mask prediction branch
directly samples Xgg9 to X599 in a single step. The subsequent sampling follows
the DDIM method [24], with a step interval of 30. After sampling X599 ten times
in each of the two decoder branches, the results are X32% and X25i%¢. Finally,
the two noisy masks at t = 299 are each sampled ten times by the noise prediction
branch, with each step directly sampling from Xsg9 to Xg. The 20 generated
masks form a set of results, which are then prepared for subsequent uncertainty
fusion. The entire sampling process is completed.

2.3 Pre Train and Condition Injection

To achieve unified lesion segmentation based on diffusion models, it is essential
to eliminate the mismatch between conditional features and denoising features
across different lesions. This requires the model to handle images from multiple
modalities simultaneously and smoothly inject the conditional features of each
lesion into the corresponding denoising features of the DNet. To this end, as
shown in part (A) of Figure 1, we pre-train the CFENet on the unified dataset for
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the segmentation task and freeze it during the DNet training. This ensures that
images from different modalities are transformed into distributions similar to the
masks before being injected into DNet, narrowing the distribution gap between
modalities and guiding DNet with the same set of features. This provides an
appropriate prediction range for DNet, enabling it to refine and generate optimal
results. During the stepwise injection of conditional features, we integrate them
using the DCA (Dual Cross-Attention) module. The DCA module consists of
two cascaded cross-attention blocks, with conditional features and noise mask
features alternating as queries.

2.4 Uncertainty Fusion

For a lesion image I, we obtain a set of masks z; (j = 1 ~ 20) through multiple
samplings. To improve the model’s accuracy and robustness, as shown in part
(D) of Figure 1, we use the STAPLE [27] algorithm to iteratively generate a
consensus mask y. The confidence values a;; and 3; for each z; are initialized to
0.9 and 0.1, respectively, representing the probabilities of correctly labeling the
target and incorrectly labeling the background as the target. For each pixel i, the
initial value of y; belongs to the target is set to 50%. The posterior probability
of y; is calculated using the 20 masks z; through Equation.2. Then, using the
maximum likelihood function from Equation.3, o; and 3; are updated based on
new y;. This update process is repeated 20 times to obtain the final consensus
mask y.
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3 Experiments

3.1 Datasets and Implementation Details

We selected six publicly available and widely used lesion segmentation datasets
from different organs and modalities to form a unified lesion segmentation dataset.
The details are provided in Table 1. For colon polyp segmentation, we follow the
setting in Spider [29], combining five datasets to increase the challenge. Each
dataset was randomly split into four equal parts for 4-fold cross-validation. For
evaluation, we used two common metrics: mean Intersection over Union (mloU)
and mean Dice Similarity Coefficient (mDice). Detailed experimental setup,
including the platform and hyperparameter settings, can be found in Table 2.
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Table 1: The dataset information of the six lesion Table 2: Implementation Details
segmentation tasks.

Category Details
Task Dataset Modality Images Framework PyTorch
Wet-AMD AMD-SD [10] ocCT 3049 Hardware 4 x 3090 GPUs
Brain-Tumor BTD [5, 6] Pl\illfl{-;TI 3064 Relsrcr)lliggon 256 X 256
. athology
Adenocarcinoma EBHI-Seg [22] image 795 Optimizer AdamW
Five datasets Endoscopy Lr Scheduler CosineAnnealingL.R

Colon Polyp 105 96,23,11,7]  image =~ 2208 Initial Lr le—4

Lung Infection COVID-19 [12,1] CT 1277  Total Epochs 300

Breast Lesion BUSI [2] Ultrasound 647 Batch Size 64

3.2 Evaluation

Comparison with State-of-the-Arts To validate the effectiveness of UniSegDiff,
we compared it with SOTA discriminative segmentation methods [19, 4,15, 20, 18]
and diffusion-based segmentation methods [28, 14, 8] on both the unified lesion
segmentation task and six individual lesion segmentation tasks. The quantitative
results are presented in Table 3. UniSegDiff consistently outperforms all models
across both single-task and unified tasks. In the unified lesion segmentation task,
all models showed a significant performance decline. However, thanks to the pre-
training of CFENet, UniSegDiff reduced the distribution gap between datasets,
resulting in no noticeable performance drop in the unified lesion segmentation
task. As a result, it outperformed other methods by a considerable margin.
Defect analysis All methods showed a significant performance drop on the
Lung Infection task during unified lesion segmentation. After examining the
dataset, we found that this was due to a large number of masks being empty
(approximately one-third of the dataset). We will clean the data and re-validate
the results in future work.

3.3 Ablation Study

In this section, we examine how different denoising methods influence segmenta-
tion performance, as well as training and inference speed. We also analyze the
impact of threshold selection in our proposed staged training method and the
contribution of each component in the network. All experiments were conducted
on the unified lesion segmentation task. Due to space limitations in the table, we
only present the average values of the metrics across all datasets for the unified
segmentation task, without showing the standard deviation.

Effectiveness of denoising methods Table 4 compares different denoising
training strategies for the diffusion model. In traditional uniform denoising,
predicting noise takes significantly more training epochs to converge. Direct
original mask prediction accelerates convergence but still requires at least 100
inference steps for satisfactory results [24]. One-step denoising [16] achieves faster
training and inference but performs better for original mask prediction than for
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Table 3: The quantitative comparisons across various lesion segmentation tasks.
From left to right in Table 3, the six tasks are those listed in Table 1. The values
following =+ represent the standard deviation.

Mothod WA . _ _ LI BL
ethods mDice mIoU mDice mIoU mDicemloU mDice mIoU mDice mIoU mDicemloU
Individual Lesion Segmentation Tasks

UNet 86.8 81.8 73.2 91.6 852 82.6 755 73.1 74.9 65.5

€ :|:051:|: 69 +0.8 :|:063:t047:|:056:t044:|:052ﬂ:183:t164:t072:t082
TransUNet 860 811 722 915 85.0 846 779 742 664 786 69.6
+0.53 :|:0 70 +1.37 £1.25 £0.39 £0.62 £0.61 £0.62 +1.73 £1.72 +0.54 £0.36

RollineUNet 1741 787 69.0 91.2 84.5 85.0 785 764 688 785 69.5
g +1.41 +1.80 +£0.78 +£0.83 £1.20 £2.07 +£0.55 +£0.70 +1.69 £1.56 +0.54 +0.40
MedNeXt 86.8 77.6 83.2 74.7 92.1 86.2 88.9 83.2 754 68.0 80.0 71.5
+0.54 £0.65 £0.78 +£0.65 £0.37 £0.41 £0.51 +0.51 £1.63 £1.41 £0.42 +0.43

EMCAD 84.3 739 828 74.1 93.0 87.2 86.9 81.3 674 599 785 69.4
+0.39 £0.49 £0.52 £0.69 £0.2 +0.27 £0.32 £0.32 +3.4 £3.33 £1.94 i .0
Medsegdiff-V2 86.7 77.5 80.9 719 91.1 84.5 852 785 T77.7 70.4 789 0.2

:|:059:|:089:|:098:|:123:&069:|:091:t026:t050:t187:t181 +2.0 :|:19

¢DAL 78.3 65.8 80.0 70.5 62 79.1 746 66.4 76.9 68
+0.62 £0.87 £0.71 :I:O75:tO31 :|:028:tO78:t089:t079:l:045:|:098:tOQl

SDS 85.1 752 812 724 913 849 86.6 80.1 76.6 69.2 787 70.1
s +0.5 +0. 7 +0.8 £0.7 £0.41 :|:045:t066:t075:t1 11 £1.07 £1.86 £1.66

76.0 93.0 87.3 89.0 82.9 79.9 72.4 81.9 73.1

1
5
.1 78.1 84.5

59 :|:079:l:071:|:058:t(]26:|:044:t123:|:122:|:125:l:139 +3.1 £3.59

UniSegDiff :Eg

Unified Lesion Segmentation Task

UNet 845 742 80.0 71.2 90.2 831 79.6 T71.1 64.5 56.0 711 61.3
+0.73 £0.87 £0.85 £0.87 £0.57 £0.78 £0.23 £0.25 £1.46 £1.44 £1.2 £1.23
TransUNet 527 716 768 676 903 831 79.7 71.2 643 56.1 75.1 65.7
+0.3 £0.37 £1.78 £1.94 £0.82 £0.89 £1.56 £1.61 £1.5 +1.59 £1.19 £1.3

RollineUNet 83-4, 728 784 688 899 826 799 713 562 47.6 728 62.3
& +1.43 +£1.79 £1.48 +£1.65 £0.96 £1.3 £0.37 +0.3 i152i159i0761071
MedNeXt 842 739 806 717 90.6 836 84.0 76.7 63.8 557 76.7 67.5
+0.33 £0.33 £0.78 £0.73 £0.37 £0.52 +£1.0 £1.42 £1.33 £1.48 :|:2 1 £1.91

EMCAD 835 727 829 742 91.6 859 869 813 652 57.7 775 68.6
+0.64 £0.87 £0.66 +£0.72 £0.27 £0.47 £0.68 £0.89 £31 £2.9 £0.84 £0.86

Medsegdiffi-ve 839, 729 780 687 912 846 781 69.9 577 492 73.8 64.7
g +0.71 £0.97 £1.55 £1.69 £0.6 +0.76 +1.4 £1.37 £1.53 £1.52 +£0.66 £0.67
DAL 76.7 640 738 644 673 62.1 828 756 659 576 755 66.6
+0.63 £0.69 £0.83 £0.99 +£1.26 +1.23 £0.94 £0.97 £1.38 £1.36 +£1.84 £1.72

SDSe 67.2 55.6_ 76.6 669 90.9 842 86.6 79.9 62.1 54.7 783 69.7

& +0.95 £0.97 £0.89 £0.87 £1.41 +£1.45 £0.72 £0.75 £1.34 £1.31 £1.78 £1.82
UniSeeDiff 86.8 77.6 83.3 74.7 92.0 85.9 88.4 82.4 79.4 71.9 79.5 70.4
& +0.5 £0.72 +£0.29 £0.18 £0.28 +0.3 £0.71 £0.96 £1.25 +£1.3 +£1.32 £1.29

noise, likely due to the network’s preference for distribution mapping. While
fast, this method sacrifices accuracy. Our staged denoising strategy balances
efficiency and accuracy: During training, dynamic prediction targets ensure high
attention across all time steps, facilitating rapid convergence and fully leveraging
the model’s capabilities. During inference, the rapid segmentation and denoising
refinement stages perform single-step sampling, achieving accurate segmentation
in as few as eleven steps (multiple refinements for mask fusion yield optimal
results). This approach is at least 10 times faster than DDIM and 100 times
faster than DDPM.

Ablation Study on Threshold Selection The staged training and inference
approach we propose is divided into three phases, with the threshold selection
between phases being critical. Table 5 presents detailed ablation experiments. In
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Table 5: Ablation experiments of

Table 4: Ablation experiments of the denois- the threshold selection

ing methods.

Denoise . o¢ rain - Infer ) Unified Task thilsgh};ld thrléglvold mgi:lf . Tn?i{U
Method & Epoch  Step | mDice mloU

. noise 1000 100 81.5 73.4 700 82.1 740

Uniform 600 83.3 75.6
mask 300 100 80.9 72.6

noise 300 1 75.3 68.2 500 82.7 T

One-Step ’ ’ 600 400 83.9 76.8
mask 300 1 78.6 71.4

Staged both 300 11 84.4 76.3 600 300 84.4 76.3

& : : 600 200 84.4 76.3

Table 6: An ablation experiments Table 7: Comparison of training time, inference

of each component. speed and inference Steps.
Staged Pre-Tra DCA Fusion|ped | Tning TN ference | Cr0e
mDice (hours) (samples/s) Steps
mDice
77.0
v 80.5 Medsegdiff ~ 172 0.24 100 77.1
v v 83.8  SDSeg  ~43 13.3 1 77.0
v v v 84.4 cDAL ~ 110 1.18 60 73.7
v v v v 85.3 UniSegDiff ~ 25 8.95 11 84.4

the experiments, the high threshold was first set to t = 600, and then, with the
high threshold fixed, different low threshold values were tested. Ultimately, it
was found that the optimal low threshold is ¢ = 300.

Effectiveness of each component Table 6 presents the ablation experiments
for each component proposed in UniSegDiff. The baseline uses uniform sampling
to predict zg during training. Clearly, while the staged training approach improves
segmentation performance, pre-training CFENet for segmentation significantly
enhances the model’s accuracy in unified lesion segmentation. The DCA module
further facilitates feature fusion between CFENet and DNet, while uncertainty
fusion leverages the randomness of the diffusion model to further enhance the
accuracy and robustness of the segmentation results.

Comparison of time efficiency Table 7 presents the efficiency evaluation
results for MedSegDiff-V2, SDSeg, cDAL, and UniSegDiff in the unified lesion
segmentation task. To ensure a fair comparison, all models were trained on the
same server. The results show that UniSegDiff significantly reduced training
time and is much faster during inference compared to MedSegDiff-V2 and cDAL.
Although it is slower than SDSeg, which samples only once, UniSegDiff achieves
segmentation accuracy far superior to other diffusion-based models.
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4 Conclusion and Future Work

In this paper, we investigate the characteristics of applying diffusion models to
segmentation tasks. Through analysis, we propose a staged diffusion framework
for unified lesion segmentation tasks, which includes tailored training strategies,
inference methods, and model architecture. To enhance alignment across different
types of lesion data, we pre-train the conditional feature extraction network
as a segmentation model, significantly improving both inference speed and seg-
mentation accuracy. Our method achieves state-of-the-art performance across
multiple lesion segmentation benchmarks. Future work will focus on expanding
our dataset to cover more lesion types and extending our approach into a unified
framework that supports both 2D and 3D lesion data, with the goal of achieving
comprehensive segmentation for all lesion types.
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