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Abstract. Late Gadolinium Enhancement (LGE) imaging has emerged
as the gold standard for cardiovascular disease diagnosis due to its ability
to clearly delineate myocardial pathology. Professional interpretation of
LGE images is usually difficult since their annotations are scarce, often
necessitating the reliance on domain adaptation methods. Nevertheless,
significant distribution discrepancy between datasets of different modal-
ities usually results in poor transfer learning performances. To address
this issue, we propose a general framework for cardiac MRI segmenta-
tion, called Cross Attention-Guided Unsupervised Domain Adaptation
with Mutual Information (CAUDA-MI). This model leverages attention
mechanisms on two data streams from the source and target domains,
cleverly fusing the Query from the source domain with the Key and Val-
ue from the target domain, thereby aligning the implicit features of the
target domain towards the source domain in the latent space. Addition-
ally, we introduce single-domain mutual information as a supplementary
means to further enhance the accuracy of myocardial segmentation. The
proposed CAUDA-MI is tested on the MS-CMRSeg 2019 and MyoPS
2020 datasets, which achieves an average Dice score of 0.847 and 0.797
respectively. Comprehensive experimental results demonstrate that our
proposed method surpasses previous state-of-the-art algorithms.

Keywords: Cardiac segmentation - Domain adaptation.

1 Introduction

Cardiac magnetic resonance (CMR) imaging, especially late gadolinium enhance-
ment (LGE) CMR, stands as a pivotal technique in revealing the structural
and pathological information of the myocardium. Recently, deep learning based
methods have achieved remarkable results in CMR myocardial segmentation
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[19,20,3,26,24]. However, when applied to LGE CMR, their effectiveness is less
than satisfactory, due to the scarcity of data and huge cost of annotation.

Unsupervised domain adaptation (UDA) methods have garnered significan-
t attention owing to their capacity to function without the necessity of target
image annotations. UDA techniques endeavor to diminish domain shift by trans-
forming data from diverse modalities into a cohesive, modality-independent la-
tent space, thereby facilitating seamless integration and analysis [14]. A widely
adopted strategy incorporates adversarial learning, leveraging a competitive iter-
ative mechanism to continuously foster mutual enhancement between the source
and target domains [5,27]. SIFA [2] integrates perspectives for cross-modality
segmentation, boosting performance with adversarial learning and discrimina-
tors. Another prevalent strategy explicitly exposes the disparity between the
source and target domains and aligns their features in the latent space by mini-
mizing this disparity [12,1]. Wu et al. [21] push the latent features of the source
and target domains towards a jointly parameterized variational form, enabling
unsupervised training of the target domain based on two variational autoencoder
networks.

Recently, the cross attention mechanism, amalgamating information from t-
wo differing data flows, has gained notice in multimodal segmentation [9,11].
Ma et al. [13] propose a image fusion framework based on cross-domain learning
and the Swin Transformer. Lin et al. [10] use the clinical knowledge of radiolo-
gists who diagnose brain tumors using multiple MRI, proposing a model driven
by clinical knowledge. The cross-attention mechanism stands out in integrat-
ing multi-stream information. However, there currently lacks a cross-attention
mechanism for LGE segmentation based on CMR images of other modalities.

Based on this, we propose a Cross-Attention-guided network, namely CAUDA-
MI, to achieve the alignment of data flows from both the source domain and the
target domain in the latent space. We employ a UNet-VAE with shared param-
eters as the encoder to extract features from both domains, enabling alignment
at multiple scales and fine-grained levels. Next, our proposed Cross-Attention
Block captures attention information from both the source and target domains,
and then fuses this information. The fused attention result serves as a “reference
standard” for the co-distribution of features from both domains in the latent s-
pace. Based on distillation loss, we further encourage the single-domain branches
of the source and target domains to converge towards the fused branch, achiev-
ing tighter feature alignment. Additionally, to preserve intra-domain features,
we also introduce mutual information metrics and discriminators for individual
domains.

The main contributions are three-fold: (1) We propose an innovative Cross
Attention mechanism for UDA segmentation, guiding target domain migration
to the latent space for implicit alignment. (2) We construct the mutual infor-
mation between segmentation and reconstruction to facilitate their interaction,
thus enhancing the segmentation performance. (3) Comprehensive comparison
and ablation experiments on the MS-CMRSeg 2019 and MyoPS 2020 datasets
validate our method’s effectiveness and superiority.
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Fig. 1. Overall workflow diagram of CAUDA-MI. Blue lines represent the source do-
main, while green lines represent the target.

2 Methodology

2.1 Framework

The core objective of CAUDA-MI is to facilitate the source domain and the
target domain to approximate a state of maximum closeness in a shared latent
space, as illustrated in Fig. 1. Firstly, we utilize the encoder of the U-Net struc-
ture to extract features from CMR images. Subsequently, through variational
inference, we make the extracted feature distribution as close as possible to a
predefined prior distribution z ~ N(0,1). This process aims to achieve effec-
tive fusion and distribution correction of information from low-resolution latent
spaces to high-resolution latent spaces.

CAUDA-MI consists of symmetrical five-layer encoders, decoders, and skip
connections (see Fig. 2), with input images of size 160 x 160. During the encoding
phase, a cross-attention mechanism is introduced to calculate the attention fu-
sion results of the source and target domains, enabling the model to approximate
the target domain to the source domain during feature extraction in the down-
sampling stage. In the decoding stage, the feature dimensions are progressively
reduced from 1024 to 512, 256, 128, and 64. Variational inference is performed on
the extracted top three layers of features. During this process, the latent mean
variable and latent logarithmic variance variable are first calculated, and then
reparameterization techniques based on the standard normal distribution are
applied to obtain latent variables corrected by prior knowledge. The variational
lower bound LByag (6, ¢) of the joint log-likelihood log py (z,y) is defined as [4]:

10gp9 (Ivy) Z LBVAE (9, ¢)
= —Dxkr, (94 (2|2) , o (2)) + Eq, (z]2) 10g (po (x|y, 2) x po (y]2))

where x, y and z represent the input image, annotation and the latent variable.
g4 (z|x) is represented by the learnable parameter ¢, which is used to approximate

(1)
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Fig. 2. The design of our Encoder, Decoder, Segmentor, Reconstructor, Cross Atten-
tion, and MI modules. Additionally, it showcases the construction of the Loss for the
Cross Attention and MI Blocks.

the real posterior distribution py(y|z). Drr(ge(z|z),pe(z)) represents the KL
divergence between g, (z|z) and the prior distribution pg(z).

Finally, the latent variables are input into the Segmentor to obtain segmen-
tation predictions, which are constrained by Lg.y. During reconstruction phase,
in addition to image itself, the source domain inputs labels as verification infor-
mation, while the target domain supplements this with segmentation results as
additional verification, thereby ensuring the accuracy and rationality of image
reconstruction. Ultimately, we use LRecon t0 train the reconstructor. We obtain
segmentation and reconstruction results at three different scales, which provide
the possibility to capture intra-domain characteristics and inter-domain features
of both the source and target domains more precisely from both global and
detailed perspectives. Furthermore, inspired by [2], we introduce an additional
discriminator to our original model architecture. During the evaluation phase of
the VAE, the discriminator can quantify the differences between two domains,
denoted as Lp;s.

2.2 Cross Attention

The source and target domain branches utilize the self-attention mechanism to
learn information within their respective domains and generate new feature rep-
resentations Hg and Hp respectively (Fig. 2). After the source domain data
stream extracts the Qg, Kg, Vs triplet, it sends Qg to the fusion branch. Sim-
ilarly, the target domain data stream sends Kp, Vp to the fusion branch for
computation. The mixed attention scores across multiple channels are calculat-
ed as attn; = QS%?T", where dj represents the scaling factor with k& channels,
and ¢ denotes the positional index of the attention head. After the attn; values
undergo Softmax normalization, they are used to perform a weighted summa-

tion with the corresponding value vectors, thereby generating a new feature
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eattng
ZJ eattnj 9
head; = j attn; ;Vri j, where j represents the sequential position index.
Specifically, we treat the segmentation prediction results of the fusion branch
as the “teacher” output and the output of the target domain branch as the “s-
tudent” output. By introducing a distillation loss function, we supervise and
encourage the results Hr of the target domain branch to approximate the re-
sults Hg 7 of the fusion branch, thereby achieving more accurate alignment and
fusion effects: Loropu = Y fusk logtary, where fusy and tary represent the
probabilities of class k from the fusion branch and the target branch, respective-
ly. To ensure that the results of the fusion branch can effectively support the
segmentation task, the fused results are upsampled to match the spatial resolu-
tion of the source domain labels. Subsequently, Lcrosey is utilized to evaluate
the degree of fit between the upsampled fusion result and the source domain
labels, thereby ensuring the segmentation effectiveness of the fusion branch.

representation Hgyr. The calculation process is as: softmaz (attn;) =

2.3 Segmentation of Mutual Information

The MI module is designed to facilitate a synergistic effect between segmentation
task and reconstruction task during model training, thereby enhancing their per-
formance through mutual reinforcement. We develop two types of mutual infor-
mation modules aimed at reinforcing the consistency of feature representations
and distributions between image segmentation information and reconstruction
information from different perspectives: Feature Mutual Information (FM) and
Distribution Mutual Information Module (DM).

Training is inspired by contrastive learning [7], aiming to maximize the dis-
tinction between positive and negative samples via KL divergence. FM focuses
on associating segmentation and reconstruction information at the feature level.
Specifically, the positive and negative samples are indexed by j and m, respec-
tively. The negative samples in FM are constructed by displacing the original
sample (positive sample), and classification between them is achieved by the
sample classifier, where T, and 7}, denote the outputs for positive and negative
samples. The function sp(-) denotes the JSD score of the sample classifier. The
FM loss is formulated as: Lpy = E; [—sp (=T,)] —E,, [sp (T7,)]. DM emphasizes
optimizing the distributional characteristics of segmentation results to achieve
statistical alignment. Here, negative samples are randomly generated noise with
specifications matching the original positive samples. D, and D,, represent the
distribution predictions for positive and negative samples, respectively. The DM
loss is defined as: Lpy = E[log (D,)] + E[log (1 — D,,)].

2.4 Loss Function

The CAUDA-MI model employs a comprehensive loss function comprising eight
terms to optimize overall performance. Specifically, LBy4 g denotes the KL di-
vergence, aligning the VAE latent space with the prior and mitigating both intra-
and cross-domain distributional discrepancies. Lgeg and Lcyoseg, both formulat-
ed as Dice scores, quantitatively evaluate segmentation accuracy on original and
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fused outputs, respectively. The reconstruction loss, L gecon, utilizes the Binary
Cross-Entropy (BCE) criterion, while L ;s adopts BCEWithLogitsLoss to super-
vise the two-domain discriminator. The cross-attention distillation loss, Lovopii,
assesses the efficacy of cross-modal guidance. Regarding the MI module, Lgp,
employs JSD to compute the FM score, reflecting the discriminability between
positive and negative sample pairs. The DM loss, Lpyy, is directly calculated as
the mutual information between distributions. The overall loss function is:

LTotal = LBVAE+ LSeg +LRecon + LDis +LC7‘thl +LCroSeg + LFJV[ +LDM (2)

3 Results

3.1 Dataset and Implementation Details

MS-CMRSeg 2019 dataset provides 45 sets of multi-sequence CMR images,
specifically in balanced Steady-State Free Precession (bSSFP), LGE, and T2
modalities, along with their corresponding annotations [28]. During the train-
ing phase, we selected 35 sets of bSSFP images and annotations as the source
domain data, while utilizing 5 sets of LGE images as the target domain data.
During the testing phase, we used another 40 sets of annotated LGE images
(unavailable for training). MyoPS 2020 dataset comprises 25 pairs of multi-
sequence CMR images, including bSSFP, LGE, and T2 modalities, serving as
the training set. Additionally, the dataset provides another 20 sets of registered
multi-sequence CMR images as the test set [16]. We adopted bSSFP CMR im-
ages and annotations from MS-CMRSeg 2019 as the source domain data, while
using LGE CMR images from the MyoPS 2020 training set as the target domain
data. When processing the annotations for LGE CMR images in MyoPS 2020,
we classified myocardial scars as part of the left ventricular myocardium. We
segmented the left ventricle (LV), right ventricle (RV), and myocardium (Myo)
on both datasets. Our model was trained using the PyTorch framework on an
NVIDIA GeForce RTX 3090 GPU, and Adam optimizer, adhering to Xavier ini-
tialization [6]. We set the initial learning rate to le-4, with 30 epochs and a batch
size of 4. No gradient scaling or clipping was utilized during training process.

3.2 Comparison with SOTA Methods

In this section, we perform a quantitative comparison of the segmentation perfor-
mance between our CAUDA-MI and other SOTA methods on the MSCMRSeg
2019 and MyoPS 2020 datasets. We adopt the Dice Score and Hausdorff Distance
as assessment metrics. Tab. 1 contrasts our model’s Dice coefficient and Haus-
dorff Distance with SOTA methods on the MS-CMRSeg 2019 dataset. Our model
achieves the highest average Dice score, especially for Myo with a significant im-
provement. Moreover, our method demonstrates the lowest Hausdorff Distance
values for LV, RV and Myo. Hence, our model exhibits superior performance on
the MS-CMRSeg 2019 dataset.
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Table 1. A comparion of Dice and Hausdorff Distance between our method and SOTA
methods on the MS-CMRSeg 2019 dataset, transitioning from bSSFP to LGE. The best
results are bolded.

Method Dice (%)1 Hausdorff Distance (mm)]

i LV RV Myo Average LV RV Myo  Average
PnP-AdaNet [5] 60.5+9.1 65.24£8.3 64.5£8.6 63.4 9.246.5 7.3£6.1 8.1£6.3 8.2
SIFA 2] 75.848.2 84.2+7.5 75.1+£7.3 78.7 |11.5£53 9.6 50 7856 7.6
CFDnet [22] 76.2 £8580.5 76 79.1+72 786 |88+55 62£52 7358 T4
AMCMR [18] 78.8+7.3 91.2+3.3 83.2+8.4 84.4 |12.5£3.3 11.3+4.6 17.1£6.1 13.64
CycleMix [25] 87.0+6.1 73.9+£0.49 79.1£7.2  80.0 - - - -
ScribFormer [9] 89.6 80.7 81.3 83.9 - - - -
ShapePU [26] 88.0+4.6 78.5+8.0 83.84+8.7  83.8 - - - -
VAMCETI [4] 89.6+4.3 82.1+12.9 76.5£8.1 82.7 [19.54+10.3 23+18.0 24.24+19.2 22.2
ModelMix [24] 88.54+8.5 75.7+£14.7 75.7+20.1 79.9 |21.4429.6 13.5£12.9 18.2+11.2 17.7
SynSeg-Net [8] 85.64+9.2 76.8+12.3 66.01+9.5 76.2 9.245.1  5.6+£2.3 13.14+8.2 9.3
VarDA [23] 735 +£92782+8577.2+£83 763 |92+63 65£58 7.8+6.1 78
CAUDA-MI (Ours)| 83.9+£7.9 79.3+7.8 91.0+3.76 84.7 | 7.6+4.6 4.5+4.4 3.4+1.8 5.2

Table 2. A comparion of Dice and Hausdorff Distance between our method and SOTA
methods on the MyoPS 2020 dataset, transitioning from bSSFP to LGE. The best
results are bolded.

Method Dice (%)t Hausdorff Distance (mm)]
LV RV Myo Average In% RV Myo Average

PnP-AdaNet [5] 60.2 £9.3 63.1 £8.7 61.2+85 61.5 [13.5+10.5 8.8 £ 7.9 152+ 10.1 125
SIFA [2] 55.2+ 8.5 59.8 £ 7.2 581 £ 78 57.7 |14.2+10.2 95£81 13.3+9.8 123
CFDnet [22] 64.5 + 10.268.2 £ 8.8 67.7+9.3 66.8 |10.8 +85 11.2+88 120+ 8.6 11.3
CMRVAE [15] 83.2 77.2 73.2 77.8 - - - -
ADSIC [14] 76.5 83.7 75.2 78.4 5.9 6.4 4.1 5.4
PASSION [17] 81.4 60.9 77.4 73.2 11.36 20.4 11.6 14.5
VarDA [23] 68.5 + 152732+ 93714 +10.1 71.1 (172 4+ 118 95+72 81+75 11.6
CAUDA-MI (Ours)| 79.5+£12.5 75.247.3 84.4+7.1 79.7 |16.3+£114 6.946.8 6.73£7.20 9.9

Tab. 2 outlines SOTA methods’ segmentation performances on MyoPS 2020.
We employed MS-CMRSeg 2019 bSSFP slices as source and MyoPS 2020 LGE
slices as target data, both undergoing identical preprocessing. Upon target do-
main shift, all models’ segmentation performances declined. Notably, SIFA, heav-
ily reliant on data quality, exhibited the steepest decline. Our model maintained
a high Dice coefficient and robust stability, especially for LV and Myo, which
affirmed strong generalization ability of our CAUDA-MI.

Fig. 3 presents a visual comparison of the segmentation results between our
CAUDA-MI and SOTA methods on the MSCMRSeg 2019 and MyoPS 2020
datasets. It is noteworthy that we compare our CAUDA-MI with current SO-
TA methods whose codes can be accessible, including SIFA, CFDNet, and Var-
DA, for comprehensive evaluation. The comparison reveals that our proposed
CAUDA-MI model demonstrates significant performance advantages. Specifi-
cally, the segmentation results of the CAUDA-MI model exhibit the highest
similarity to the ground truth, with smoother edge distributions and clearer
interpretation of myocardial structures.

3.3 Ablation Study

Tab. 3 summarizes the quantitative changes in model performance after incor-
porating different components. Notably, the introduction of MI Block results
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Table 3. Ablation experiments on model components for CAUDA-MI based on the
MS-CMRSeg dataset, transitioning from bSSFP to LGE. Here, UNet-VAE represents
the VAE domain alignment network with a basic U-Net structure, followed by the
sequential addition of model component. The highest Dice score is bolded.

Model Component Dice (%)t
UNet-VAE Discriminator MI Block CA Guidance CA Segmentation vV RV Myo Average
v 74.5£9.8 79.2 +86 79.7 £ 114 77.8
v v 76.2+57 81.3+6.9 79.0£7.6 795
v v v 815+ 75 798+ 73 85.0+46 821
v v v v 81.2 + 8.281.5 + 6.8 87.0 4.5 83.9
v v v v v 83.9+7.9 79.3+7.8 91.0+3.76 84.7
Image Ground Truth STFA CFDNet VarDA Ours

2jslalalo
3 3jolalale
3l3jelalale
S 3jel0lala

Fig. 3. A visual comparison of the segmentation results. MS-CMRSeg results are in
row 1-3, MyoPS results are in row 4-6. LV, RV and Myo are indicated in blue, green
and yellow, respectively.

in a slight decline in Dice of RV, it brings significant improvements for LV
and Myo. This suggests that MI Block significantly boosts the model’s over-
all performance. Furthermore, when the Cross Attention mechanism is further
incorporated for guidance and segmentation, the model’s predictions for various
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myocardial structures become more uniform, and overall stability is improved.
This finding validates the effectiveness of the Cross Attention mechanism.

4 Conclusion

In this work, we propose the CAUDA-MI model, which is specifically designed for
processing source and target domain data within a shared-parameter UNet-VAE
framework. Innovatively, we introduce a Cross-Attention mechanism to facilitate
efficient alignment between the two domains in the latent space. Furthermore,
the model integrates single-domain mutual information modules and a discrim-
inator, significantly enhancing its representation accuracy and discriminative
ability for domain characteristics. Extensive experimental results demonstrate
that CAUDA-MI exhibits outstanding performance on the MS-CMRSeg 2019
and MyoPS 2020 datasets, fully validating its effectiveness and superiority.
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