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Abstract. We present GeneMorphFormer, a Transformer-based model
to decode nonlinear interactions between gene expression and cortical
morphology. We align expression maps with gray matter and white mat-
ter boundary curves through spatial normalization by leveraging mar-
moset in situ hybridization (ISH) data. Our model employs multi-head
self-attention to model global dependencies across 1024 gene features,
optimized by a hybrid loss (MSE and Hausdorff distance) balancing lo-
cal precision and global shape fidelity. SHapley Additive exPlanations
(SHAP) analysis is subsequently employed to quantify the contribution
of genes to morphological shape. Wavelet-based clustering further reveals
distinct gene sets governing smooth versus fluctuating morphologies, sug-
gesting hierarchical genetic regulation. Experimental results demonstrate
that GeneMorphFormer outperforms traditional networks in both global
shape matching and local precision. This work proposed a biologically
interpretable Transformer architecture for cross-scale gene-morphology
mapping and enables systematic exploration of genetic drivers in corti-
cal morphology malformations. Our code is publicly available at
https://github.com/Leveup/GeneMorphFormer.
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1 Introduction

Primate cerebral cortex undergoes a large fold expansion in surface area from
gestation to adolescence, driven by spatially heterogeneous gene expression [9].
Many genes were observed to exhibit expression variation across different cortical
regions, inducing mechanical forces that orchestrate gyral folding patterns [11].
This gene-morphology interplay establishes functional hierarchies that high-
gyrification regions are closely related to brain activities and interactions showing
distinct thickness [8].
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While several hypotheses have been proposed to describe folding mechanics,
transcriptomic regulation is considered as the root driver. Gene Trnp1 influ-
ences neuronal differentiation and cortical growth, promoting the regionalized
folding pattern [10], and TMEM14B explains primate-specific sulcal length vari-
ance through radial glia expansion [5]. However, cortical expansion is a complex
process driven by synergistic interaction of thousands of genes, which is undis-
covered in these studies.

Many researchers use linear models and deep learning methods to capture
the potential relationship between gene expression and phenotypic morphology.
For example, Zhou applied partial least squares regression and enrichment anal-
ysis to examine the relations between spatial pattern of normal cortical thinning
and genes predominantly expressed in various neurons in children and adoles-
cents [15]. Similarly, Venugopalan utilized stacked denoising auto-encoders to
extract features from clinical and genetic data, and 3D-convolutional neural net-
works (CNNs) to predict Alzheimer’s disease by integrating intermediate-level
features [13]. These methods often rely on feature concatenation rather than
modeling the complex distributional relationships within the data, which limits
their potential to uncover deeper feature interactions.

Recently, Transformer architecture has demonstrated remarkable success in
capturing long-range dependencies between data elements, excelling in sequence
generation and image processing. It has also shown unique advantages in the
field of neuroscience. For instance, Sun et al. applied Transformers to fMRI
data, successfully capturing temporal dependencies and accurately predicting
brain activity over short time intervals (predicting 5.04 seconds of activity from
21.6 seconds of data). This demonstrates the effectiveness of Transformers in
modeling the spatiotemporal dynamics of brain function [12].

Moreover, in situ hybridization (ISH) enables cellular resolution gene map-
ping, bridging gene expressions to particular brain regions, even cortical mor-
phology. Li et al. utilized sparse coding on ISH data to identify spatial expression
patterns of genes across different brain regions, revealing the transcriptomic ar-
chitecture of mouse brain [4]. Li et al. also used ISH data from marmoset brains
to look for genes corresponding to convex and concave regions in cortical surface
by a support vector machine model [3].

Therefore, we propose GeneMorphFormer, a novel architecture specifically
designed for coordinate prediction. By standardizing the spatial positions and
scales of cortical curves, our model extracts and compares features within a con-
sistent reference framework. It predicts gray matter and white matter boundary
morphology from gene expression data, capturing the nonlinear relationship be-
tween genetic features and cortical shape. Furthermore, by quantifying genes’
contribution by SHapley Additive exPlanations (SHAP) analysis, our approach
identifies key genetic factors driving cortical development and folding, offering
new insights into the genetic mechanisms underlying cerebral cortex formation.
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Fig. 1. Overview of the cortical morphological gene analysis workflow.

2 Method

The comprehensive methodological pipeline is illustrated in Fig. 1. The workflow
begins with extracting cortical boundary curves and transcriptomic data. Sub-
sequently, a transformer-based predictive modeling framework, we called Gen-
eMorphFormer, is implemented to infer cortical morphological features from gene
expression signatures. Finally, SHAP analysis is employed to quantitatively as-
sess feature importance and elucidate key molecular determinants underlying
cortical development.

2.1 Generating boundary curves and corresponding gene expression
matrices

We selected 1024 ISH images from the Brain/MINDS marmoset gene atlas
dataset [7], which also includes Nissl-stained and MRI anatomical images. Both
ISH and Nissl-stained images are composed of 60 sections with a resolution of 96
dpi and dimensions of 7200×8400 pixels. The grayscale values in the ISH images
correspond to the gene expression levels at each point

As illustrated in Fig. 2, our computational pipeline begins with a CBAM-
enhanced TransUnet [14, 1] trained on MRI data to segment the cortical gray
matter on Nissl-stained templates. The extraction process involves identifying
the contours of the segmented gray matter, followed by selecting the inner bound-
ary curves. These curves were discretized into 600-point segments, resulting in
379 segments. A subsequent 2D affine transformation from ISH images to Nissl-
stained templates enabled gene expression mapping onto the boundary curves,
generating a 600×1024 gene expression matrix per segment.
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Fig. 2. Pipline for generating morphological curves and gene expression matrices

Prior to model training, cortical segments were spatially normalized using
sequential rigid transformations to eliminate geometric confounders. The nor-
malization process included: (1) translate initial points to the origin (0,0); (2)
rotate curves to ensure the terminal points were collinear along the x-axis; and
(3) isotropic scaling to fix the terminal coordinates at (600,0). This standard-
ization established a unified coordinate system, removing variability in position,
orientation, and scale. The resulting framework enables deep learning models to
focus on intrinsic gene-morphology relationships without spatial transformation
artifacts.

To enhance model generalization and mitigate overfitting, we applied hori-
zontal flipping to each cortical curve as a data augmentation strategy, resulting
in 758 samples. These were divided into 683 for training and 75 for testing.

2.2 GeneMorphFormer Model

Then GeneMorphFormer is employed to predict the 2D coordinates of boundary
curve segments from corresponding gene expression data. The model takes a gene
expression matrix X ∈ R600×1024 as input, where each row represents a point
along the cortical curve, and each column corresponds to gene expressions. The
input features are first mapped to a higher-dimensional embedding space via a
linear transformation:

Xemb = XWin + bin, Win ∈ R1024×d, bin ∈ Rd (1)

where Xemb ∈ R600×d is the embedded gene expression matrix, and d is the
embedding dimension. To retain the positional information of each point, we add
position embeddings Pemb based on position indices:
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Pemb = PositionEmbedding(p), p ∈ {0, 1, 2, . . . , 599} (2)

Then we added these positional embeddings to learn morphological informa-
tion correctly:

Xinput = Xemb + Pemb (3)

The encoder consists of 8 layers of Transformer Encoder blocks, each incorpo-
rating a Multi-Head Self-Attention (MSA) mechanism and a Feed-Forward Net-
work (FFN). The self-attention mechanism captures global dependencies among
gene expression values across different points. The output of the attention mech-
anism is processed through the feed-forward network.

The final encoded representation is passed through a fully connected layer to
predict the 2D spatial coordinates of each point:

Ypred = XencWout + bout, Wout ∈ Rd×2, bout ∈ R2 (4)

To maintain the consistency of the morphology, the starting and ending
points of the curve are fixed.

2.3 Loss Function

To accurately predict points coordination and line shape, we use a weighted sum
of Mean Squared Error (MSE) and Hausdorff distance as loss function:

Loss = α×MSE + β ×Hausdorff (5)

where α and β are the weighting factors for MSE and Hausdorff distance,
respectively. The MSE metric computes the average squared differences between
corresponding points on predicted and ground truth curves, providing a fine-
grained measure of local alignment accuracy at each sampled point. In con-
trast, the Hausdorff distance, defined as the maximum of the directed distances
between two curves, evaluates global shape correspondence by identifying the
worst-case deviation between the predicted and actual curves. After experimen-
tation, we set α = 0.8 and β = 0.6 as the optimal parameters. The Adam
optimizer [2] with an initial learning rate of 10−4 was used for 2000 epochs, with
StepLR halving the learning rate every 250 epochs to improve convergence and
stability.

2.4 SHAP Analysis

In this study, we use SHAP (SHapley Additive exPlanations [6]) to quantify the
contribution of gene expression features to predictions. We apply the Gradient-
Explainer method, which estimates feature contributions by computing gradients
of the model’s output with respect to each input feature. This method integrates
the gradients into a reference distribution to assess the impact of each gene on
cortical morphology prediction. Specifically, for an input sample x, the SHAP
value is approximated as:

ExpectedGradientsi(x) = E x′∼D
α∼U(0,1)

[
(xi − x′

i)×
∂f(x′ + α(x− x′))

∂xi

]
(6)
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where x′ is a reference sample from the data distribution D, α is a scaling
factor sampled from [0, 1], and ∂f

∂xi
is the model’s gradient with respect to feature

i. The formula captures how the input gene expression signatures affect the
morphological prediction of the output, enabling accurate attribution of gene
contributions.

2.5 Cortical Curve Classification

To further investigate the relationship between cortical shape and gene expres-
sion, we apply discrete wavelet transform (DWT) with Daubechies 4 (db4)
wavelet for fourth-order decomposition, extracting multi-scale shape features.
The resulting approximation and detail coefficients form feature vectors repre-
senting each curve’s morphology. Then we employ K-Means and determine the
optimal number of clusters K=2 using the silhouette coefficient. Post-hoc in-
spection of the clustering results revealed that the two groups corresponded well
to curves with smoother trajectories and those exhibiting more pronounced lo-
cal variations. After that, we link SHAP values for all genes with specific curve
clusters.

3 Result

3.1 Cortical morphology prediction performance

We conducted a detailed comparison between the predicted results and the true
coordinates. We used the Mean Squared Error (MSE) and Mean Absolute Error
(MAE) to quantify the overall deviation of the predicted values at each coordi-
nate point. At the same time, we utilized the Hausdorff distance to measure the
deviation of the overall shape. We compared the prediction performance of main-
stream deep learning neural networks on all test samples. The specific results
are shown in Table 1. The experimental results clearly show that compared with
these models, our method has more advantages in accuracy and global shape
matching.

Table 1. Model Evaluation Indicators

Model Evaluation Indicators
MSE MAE Hausdorff distance

CNN 0.200 0.153 0.788
ResNet 0.197 0.178 0.674
GCN 0.255 0.218 1.157

Our Model 0.182 0.207 0.554

In addition, we selected 5 samples from the original curves for visual pre-
sentation (see Fig. 3) to clearly demonstrate the performance of each model in
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Fig. 3. Predicted curves and ground truth curves of 5 selected segments.

the cortical morphology prediction task. Here, red curves represent the corti-
cal morphology predicted by each model, while blue curves represent the actual
morphology of the cortical segments. It can be observed that in multiple sam-
ples, prediction curves generated by our model have a high degree of fit with the
actual curves, indicating that the predicted morphology is relatively close to the
real one. This visual comparison further illustrates the superiority of our model
in cortical morphology prediction.

3.2 SHAP Analysis Result

In this study, with the help of SHAP analysis, we screened out the top 20 genes
that contribute the most to the prediction of cortical morphology. To investigate
gene contribution levels among different curve samples, we finally determined
to divide all segments into two categories, presented in the upper-right corner
of Fig. 4. by calculating the silhouette coefficients under different numbers of
clusters. It can be clearly seen that these two types of curves have significant
morphological differences. One type shows a smooth shape, while the other ex-
hibits a more complex fluctuating shape.

For each type of curve, we further investigated the contribution of different
genes to the shape of the curve. Again, using SHAP analysis, we both selected
top 20 genes with the highest contribution levels on two types. As a result, we ob-
tained 12 common genes: CACNA2D3, FBXO32, IGFBP4, MPPED1, NFE2L3,
NFIB, NFIX, PJA2, PPP1R1B, PTPRF, SV2A, and TRIM16. These results are
shown in the bottom right corner of the graph, with crossed genes marked with
asterisks.
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Fig. 4. SHAP analysis results. (a) The bar chart illustrates the contribution of genes to
cortical morphology prediction, and the accompanying scatter plot shows gene expres-
sion levels across samples. (b) Clustering results based on cortical curve characteristics.
(c) SHAP-based gene contribution analysis for each cluster. Genes marked with an as-
terisk (*) exhibit high importance in both clusters.

Our research identified multiple genes that play a crucial role in curves of
different morphologies. These genes provide important clues for exploring the
universal regulatory mechanisms of curve morphologies. At the same time, by
separately screening genes with high contribution in a single type of curve, we
have successfully revealed the unique regulatory genes for specific curve mor-
phologies. This series of achievements is of great significance for in-depth explo-
ration of the complex relationship between genes and curve morphologies.

4 Discussion

Our Study presents a novel Transformer-based framework for decoding the re-
lationship between gene expression and cortical morphology. This framework
demonstrates superior performance in coordinate regression tasks compared to
CNN and GCN. Meanwhile, our study reveals several genes as key contributors
to cortical morphology changes by SHAP analysis, aligning with prior findings
of their roles in biological process. For example, genes NFIX and CACNA2D3
with high contribution values are reported to be essential for neuronal migra-
tion and calcium signaling. Notably, our wavelet-based clustering finds gene sets
associated with smooth versus convoluted morphologies, which suggests a hier-
archical genetic regulation mechanism: different cortical morphologies are driven
by different genes.
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In conclusion, this study reveals the complex relationship between cortical
morphology and gene expression and provides an in-depth exploration of gene
contributions in different curve morphologies using wavelet transform and SHAP
analysis methods. Our research not only offers new insights into cortical mor-
phological development but also lays the foundation for further exploration of
how genes regulate morphological changes in the brain cortex.
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