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Abstract. 2D biomedical foundation models (FM) have demonstrated
remarkable capabilities in 2D medical image segmentation across vari-
ous modalities, with text-prompted approaches offering scalable analysis
that facilitate integration with LLMs and clinical application. Adapting
these models for 3D medical image segmentation can leverage their rich
visual features while enabling text-prompted volumetric image segmen-
tation. However, efficient adaptation poses significant challenges due to
the substantial disparity between 2D and 3D medical images and the
necessity to establish text-volume alignment. To address these limita-
tions, we propose Bio2Vol, a novel adaptation framework that enables
text-prompted 2D biomedical FMs to effectively handle volumetric data.
Specifically, (1) To bridge the dimensional disparity, we propose a Dual-
Rate Sampling strategy (DRS) that processes inter slices within a vol-
ume at both sparse and dense intervals, capturing global contexts and
local details; (2) To enhance volumetric feature representation, a Cross-
slice Dual-head Attention (CSDHA) is built upon the intra-slice features
by repurposing existing pre-trained attention modules for parameter-
efficient inter-slice information fusion; and (3) To establish text-volume
understanding, a Semantic Text-Visual Alignment loss (SAT) is used
to extend the existing 2D text-visual alignment to the volumetric do-
main. Using BiomedParse as a demonstration case, extensive evaluation
across 11 medical datasets across diverse anatomical regions and modal-
ities shows that Bio2Vol significantly improves 3D medical image seg-
mentation performance, enhancing DSC by 4.72% on Amos22 dataset
with substantial improvements across MSD tasks. Code will be available
https://github.com/JiaxinZhuang/Bio2Vol.

Keywords: Adaptation - Foundation Model - 3D Medical Images.

1 Introduction

Medical image segmentation is fundamental to biomedical discovery, support-
ing clinical diagnosis, surgical planning, and disease monitoring [21, 36,4, 20].
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Foundation models have catalyzed a paradigm shift in medical image analy-
sis, advancing automation and accuracy [26,5,23,15,32,7]. However, special-
ized FMs remain limited by modality-specific training requirements [26, 5, 23],
restricting their universal applicability [15, 32, 18]. Recent innovations have ex-
panded multi-modality support and improved interaction mechanisms [32, 15, 17]
for 2D medical images. While SAM-based methods [15] work across various 2D
medical image types, they require manual visual prompts. In contrast, Biomed-
Parse [32] enables fully automatic segmentation through text prompts alone and
supporting nine different 2D medical imaging modalities. This transition from
visual to text-based prompting eliminates the need for manual inputs, enhanc-
ing clinical deployability where efficiency and reproducibility are essential [32, 28,
33]. By pre-training over 6 million 2D image-mask-description triples across nine
modalities with segmentation, detection, and recognition tasks, BiomedParse [32]
yields robust biomedical knowledge and language understanding capabilities that
outperform general-purpose models adapted to medical domains. Despite its ef-
fectiveness with 2D medical images, these biomedical FMs exhibit limitations
when applied to 3D volumetric datasets, as they cannot capture inter-slice con-
textual dependencies in the volumetric data and its alignment with text. This
constraint is particularly problematic given the prevalence of volumetric data in
clinical diagnostic imaging [19, 31, 3, 28,25, 10, 16]. Although recent 3D medical
image FMs [8,2,18,25,38] have improved performance on volumetric medical
images, they are typically restricted to 3D applications, losing the versatility
of working with 2D medical image modalities [3,25]. Furthermore, these mod-
els require specialized 3D encoders that cannot leverage the rich multi-modal
knowledge learned from the vast amount of 2D medical imaging data [5, 19, 31].
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Fig. 1: Comparison of prompt-guided 2D biomedical foundation models for med-
ical image segmentation and text-prompted adaptation to 3D medical image.

Adapting text-prompted 2D FMs to 3D domains presents three critical chal-
lenges: (1) Volumetric Context - understanding 3D context by capturing inter-
slice relationships and anatomical continuity while maintaining powerful pre-
trained 2D representations; (2) Knowledge Preservation - establishing text knowl-
edge alignment with 3D volume context beyond original pre-trained 2D rep-
resentations; and (3) Computational Efficiency - balancing performance with
computational costs. As shown in Fig.1, existing approaches typically adopt
parameter-efficient methods by freezing the pre-trained 2D biomedical FM and
introducing additional adapters such as memory modules to information of the
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previous slices [25], a spatial-temporal operator by depth-wise 3D convolution
layers between bottlenecks[19, 18, 10] or progressively joint-adaptations for each
two dimensions respectively [31]. However, these methods face significant limi-
tations. They only finetune the model with uniformly sampled slices from the
volume, failing to comprehensively capture both global context and local de-
tails needed for proper volumetric understanding. Furthermore, these adapta-
tion approaches don’t extend text-image understanding to text-volume under-
standing, preventing effective knowledge preservation between text prompts and
volumetric features. Additionally, they introduce extra parameters to adapt the
2D biomedical FM, sacrificing computational efficiency.

This paper introduces Bio2Vol, a novel adaptation framework that extends
text-prompted 2D biomedical FMs such as BiomedParse [32] to volumetric med-
ical image segmentation. As illustrated in Fig. 1(d), our approach bridges the
2D-3D gap through three synergistic components: (1) DRS sampling strategy
processes inter-slice information at both sparse and dense intervals to capture
comprehensive volumetric context and fine-grained details; (2) CSDHA repur-
poses existing pre-trained intra-slice attention modules to establish inter-slice
information fusion without adding new parameters; and (3) SAT extend text-
visual alignment to the volumetric domain. Based on BiomedParse [32], exten-
sive evaluation across 11 diverse CT and MRI datasets demonstrates significant
improvements in 3D medical image segmentation performance. Furthermore, this
design can keep the versatility of working with 2D medical image modalities, and
potentially can be applicable to extend other 2D biomedical FMs for facilitating
the 3D medical imaging analysis.

2 Method

As shown in Fig. 2, we propose a novel framework to adapt the pre-trained text-
prompted 2D biomedical FM BiomedParse [32] for 3D medical image analysis.
Each volume and its text prompt first undergo our DRS strategy, extracting
robust intra-slice features via a frozen pretrained 2D backbone before fusing
inter-slice information through our CSDHA mechanism. The resulting volumetric
features are aligned with the text prompt using our SAT loss.

2.1 Dual-rate Sampling Strategy

Accurate medical image segmentation requires understanding both the global
anatomical context for organ relationships and boundaries, as well as local fine-
grained details for precise delineation [18,32,29]. Similar to video understand-
ing where both long-range and short-range temporal dependencies matter [9],
medical volumes benefit from multi-scale analysis across slices [24]. Motivated
by this observation, we first crop a sub-volume to focus on the region of in-
terest. Given this 3D medical sub-volume V € RP*HXW where D, H, and
W denote depth, height, and width respectively, we apply our dual-rate sam-
pling strategy across the slice dimension (i.e., D dimension) to balance com-
prehensive volumetric understanding with computational efficiency. Our design
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(a) Dual-rate sampling strategy (DRS) (b) Cross-slice Dual-head Attention (CSDHA)

Fig. 2: Framework of our proposed Bio2Vol. (a) DRS processes volumes at dif-
ferent sampling rates—a sparse rate for capturing global anatomical context
and a dense rate for preserving local details; (b) CSDHA repurposes existing
pre-trained attention modules to propagate information across slices without in-
troducing additional parameters; and (¢) SAT maintains coherence between text
prompts and volumetric features.

leverages the pretrained FM for strong spatial representation within intra slice
while complementing it with inter-slice understanding through two different sam-
pling rates. The low-rate pathway samples slices sparsely with rate r,, generat-
ing sequence Ssparse = {Vi.,ns}iz/g 1o capture global anatomical context. The
dense-rate pathway samples more densely with rate ry < 75, producing sequence
Sdense = {Vjry }f:/gdfl to preserve fine-grained details and local transitions. This
dual-rate design effectively extends the pretrained 2D model’s capabilities to 3D
medical image analysis by combining robust intra-slice features with inter-slice
contextual information. Ablation study by increasing the sequence length D of
the sub-volume enhances the effectiveness of this strategy, confirming the ability
of our dual-rate approach to effectively leverage extended volumetric context.

2.2 Cross-slice Dual-head Attention

To effectively integrate information across different slices while maintaining the
efficiency of BiomedParse’s pre-trained architecture [32], inspired by [16], we
propose a parameter-efficient adaptation CSDHA that repurposes its existing
attention mechanisms. Unlike previous adaptation methods that require addi-
tional adapters [19, 31,22, 3,28, 37,25, 10, 27|, our approach reuses the existing
attention module without introducing new parameters. Given an input sequence
from either pathway S = {z1, 72, -+, 27} where z; € RT*W e first extract
features using the frozen pre-trained 2D encoder E in the BiomedParse [32]:

F = E(S) e RT*C, (1)
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where T is the sequence length (T = D/r, for sparse pathway and T = D/ry
for dense pathway) and C' is the feature dimension. The feature representation
F is then linearly projected using learnable weight matrices Wa%n, WE . and

attn»
WYX, to obtain query, key, and value representations:

Q. K,V =FWS& ,FWE FWY . (2)

In CSDHA design, we divide the h attention heads into two groups: h—k heads for
intra-slice modeling and & heads for inter-slice modeling. For intra-slice heads, we
maintain the original attention mechanism for each position ¢th in the sequence:

I-head; = Attention(Q!, K}, V). (3)

For inter-slice heads, we extend the attention to capture relationships between
slice at position ¢ and slices at position ¢t + At:

C-head; = Attention(Q!, KI T4 VIT4Y) (At; #0). (4)
The final output of CSDHA combines both intra-slice and inter-slice information:

CSDHA(F) = Concat(C-head,, - - - , C-heady, I-headj41, - - - ,I-head;,)W<

attn-
(5)
CSDHA repurposes existing attention mechanisms to handle both intra-slice
features and inter-slice relationships without extra parameters. By controlling
slice offsets At via DRS sampling, we capture multi-scale dependencies within
the volume while preserving 2D feature extraction capabilities. CSDHA replaces
all standard attention modules in the architecture.

2.3 Semantic Alignment for Text and Dual-path Visuals

While BiomedParse [32] demonstrates strong capabilities in text-prompted seg-
mentation of 2D medical images—establishing correspondence between textual
descriptions and anatomical structures or pathologies—it does not inherently
address the alignment between volumetric data and textual descriptions. This
represents a critical challenge in medical volume understanding, where the con-
textual information spans across multiple slices in 3D space. To bridge this gap,
we propose a dual-path alignment mechanism that ensures semantic consistency
between volumetric and textual representations. Our approach extends Biomed-
Parse [32] by introducing an alignment loss that maximize the similarity between
text features and averaging pooled visual features from both pathways:

Latign = —(Sim(Pool(FLm ) Eyo.) 4+ Sim(Pool(F17) Erowe)),  (6)

sparse dense

where Ffinal | F77" yepresent the final features from sparse and high pathways
respectively (i.e., global contexts and local details ), Ei..: denotes the text
features, Pool averages spatial dimensions, and Sim denotes cosine similarity.

Overall Objective. The total loss combines this novel alignment objective with
the original BiomedParse losses [32], i.e., £ = Lpiomedparse + ALalign Where A is

a hyperparameter that balances the two loss components
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3 Experiment Results

Implementation Details. We implemented our methodology using Python
3.9, PyTorch 2.4, and MONATI 1.4, running all experiments on an NVIDIA RTX
3090Ti GPU. Following [32], we preprocessed each volumetric dataset by crop-
ping sub-volumes of depth d and resizing the extracted slices to 1024 x 1024. The
preprocessing pipeline included intensity thresholding and max-min normaliza-
tion to the [0, 1] range. We fintuned the model [32] using Adam optimizer [6]
with a learning rate of le-5 and batch size of 5 for 20 epochs. The alignment
loss weight A\ was set to 1, with r; = 1 and r; = 2 and d = 7. For CSDHA, we
configured h = 12, and empirically set £k = 1 and At = 2. We evaluated model
performance using three metrics: Dice score coefficient (DSC), Normalized Sur-
face Dice (NSD), and 95th percentile Hausdorff Distance (HD95).

Datasets. We evaluated Bio2Vol on 11 public 3D medical image datasets across
CT and MRI modalities, following the partitioning in [32]. These include the
Amos22 dataset [14] (500 CT scans for abdominal organ segmentation) and the
Medical Segmentation Decathlon (MSD) [1], which contains ten distinct organ
and tumor segmentation tasks. More details are available in [32]. We followed
[32] to construct the text prompt for each volume data.

Table 1: Comparison of Dice scores (%) on the Amos22 dataset [14], with best
and second-best results bolded and underlined, respectively. Per-class standard
deviations are omitted for brevity. Methods marked with T adapt 2D biomedical
foundation models to 3D medical imaging. (p < 0.05)

Dice score(%)

Methods Ll ST SP LK PA IV AO RK BL DU ES GB LA RA PR V6
3D backbone

nnUnet[13] 90.86 91.21 89.47 78.42 73.18 94.98 62.84 89.12 61.90 75.55 60.96 57.97 65.98 74.47 66.58 78.88:0.07
UNETR[12] 89.51 90.61 85.49 72.81 76.05 93.44 78.62 90.05 81.59 76.99 65.27 62.19 62.37 69.76 69.61 77.620.04
nnFormer|35] 93.31 92.55 92.29 83.10 75.11 95.91 88.21 89.39 83.69 80.19 63.41 59.99 70.92 78.48 73.96 81.370.60
SegMambal30] 90.66 93.43 91.47 82.86 79.34 94.85 86.66 91.87 87.01 81.32 69.26 64.95 73.40 74.73 75.61 82494542
SwinUNETR/11] 91.28 94.20 92.86 82.40 80.02 95.72 88.36 91.27 87.25 81.73 68.55 68.91 72.75 79.99 76.05 83424034
Visual-prompt based

SAM [15] 68.20 61.47 74.07 80.43 39.93 52.77 77.33 79.93 61.83 38.13 49.10 69.97 31.73 24.33 68.32 58.50+10.12
3DSAM-adaptert [10] 86.60 81.23 91.20 88.57 71.87 85.80 92.20 87.90 89.27 80.03 81.33 87.37 74.43 60.70 69.03 81.84+135
MA-SAM; [3] 94.33 86.80 88.30 91.67 79.10 82.00 89.70 91.67 89.79 80.27 79.40 T4.37 74.36 68.73 69.12 82.641,.06

Medical SAM2 [37] 91.23 85.70 90.17 83.10 80.70 90.17 86.83 88.90 83.13 83.37 83.87 77.48 79.12 67.36 67.35 82.574+0.53
Text-prompt based

BiomedParse[32] 92.59 93.17 90.23 82.10 74.82 88.60 86.35 90.50 88.45 85.21 65.22 61.55 77.10 66.69 68.35 80.73+0.70
Ensemblet [34] 94.55 93.67 91.46 82.46 76.31 88.51 86.82 90.41 88.19 85.02 66.45 62.78 77.44 68.26 69.45 81.454+0.24
ST-Apatert [19] 95.73 95.10 95.23 65.27 82.27 97.03 90.67 90.30 87.30 78.87 86.43 74.33 77.45 68.07 69.49 83.40.0.34
AIM7 [31] 95.13 94.93 94.50 85.30 82.27 95.57 89.90 92.70 87.27 83.37 77.87 72.77 74.67 69.67 68.97 84.3210.59
Ours 96.20 96.50 95.90 84.40 85.60 96.40 94.30 94.10 92.40 85.40 70.20 72.50 79.13 70.50 75.00 85.45+0.45

Note: LI (Liver), ST (Stomach), SP (Spleen), LK (Left Kidney), PA (Pancreas), IV (Inferior Vena
Cava), AO (Aorta), RK (Right Kidney), BL (Bladder), DU (Duodenum), ES (Esophagus), GB
(Gall Bladder), LA (Left Adrenal Gland), RA (Right Adrenal Gland), PR (Prostate).

Performance Comparison. As shown in Table 1, 3D backbone segmenta-
tion methods demonstrate competitive performance by processing volumetric
data holistically. Direct application of 2D visual-based models like SAM [15]
yields suboptimal results due to missing volume context. Adaptation approaches
such as 3DSAM-adapter [10] and MA-SAM (3] significantly improve performance
through spatial and temporal adapters. Medical SAM2 [25], despite being a 2D
FM, achieves comparable results by using memory blocks to model inter-slice re-
lationships with proper fine-tuning, indicating the importance of learning volume
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context. Recent text-prompt-based 2D biomedical FMs BiomedParse [32] also
show strong performance from training on large, diverse medical datasets across
nine modalities. Parameter-efficient tuning methods (Rows 11-13) in Biomed-
Parse [32] demonstrate substantial improvements by effectively modeling con-
tinuous slice information. Notably, text-prompted adaptation methods consis-
tently outperform visual-prompt SAM-based approaches. Our proposed method
achieves mean Dice score of 85.45% and statistically significant improvement
(p < 0.05) over existing approaches. This improvement stems from better mod-
eling of inter-slice relationships while preserving learnable features and strength-
ening the correlation between volume context and text prompts. Fig. 3 provides
qualitative comparisons of segmentation outcomes.

Groundtruth  SwinUNETR  Medical SAM 2 BiomedParse ST-adapter

Fig. 3: Qualitative comparison of abdominal organ segmentation results on the
Amos22 dataset [14] using the text prompt: “Organs in the abdomen in the CT.”

Generalization Analysis. We evaluated Bio2Vol’s generalization capability
on the MSD dataset [1]. As shown in Table 2, Bio2Vol consistently outperforms
BiomedParse [32] and SOTA methods across all metrics (DSC, NSD, and HD95).
Notable improvements appear in challenging tasks like Task03 and Task05, par-
ticularly in HD95 measurements. By leveraging continuous slice information,
Bio2Vol better models 3D anatomical structures compared to 2D FMs that
process slices independently. While AIM [31] introduced joint spatial-temporal
adapters for inter-slice modeling, our approach achieves significantly better re-
sults through two complementary innovations: 1) the CSDHA module paired
with our DRS strategy, which together enhance volumetric context modeling;
and 2) our SAT module that strengthens the alignment between volumetric fea-
tures and text prompts. This parameter-efficient design enables more comprehen-
sive modeling of anatomical structures across multiple slices while maintaining
the FM’s original strengths, allowing better represent 3D anatomical structures.

Ablation Study. As shown in Table 3, the base model [32] (i.e., Biomed-
Parse without adaptation), achieves a DSC of 80.73% and NSD of 78.25% on
the Amos22 dataset [14]. Adding CSDHA improves the performance to 85.01%
DSC and 79.32% NSD, demonstrating its effectiveness in capturing inter-slice
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Table 2: Quantitative comparison with SOTA adaptation methods based on
BiomedParse [32] across ten tasks on MSD dataset [1].

Metrics Method Task01 Task02 Task03 Task04 Task05 Task06 Task07 Task08 Task09 Task10
BiomedParse [32] 80.5410.63 86.51+1.85 78.68+1.44 81.241167 25.75+0.80 11.0640.64 46231112 43.841134 60.711156 61.3310.72
DSCT AIM7 [31] 81.33+1.45 86.9511.88 79424152 82451175 26.8910.01 12.851067 47.38+1.18 44.654137 61.541158 61.9841.49
Ours 83.52.10.50 87.98+1.092 81.321165 84.221188 29.3210.95 16.3210.72 49.124 .28 46.3211 .41 63.1211 62 63.124) 58
BiomedParse [32] 69.60+0.75 81.69+1.76 36.48+10.90s 37.1311.05 24.8040.85 5.55+052 42434115 64.191148 64.191150 59.5311.38
NSDt AIMf [31] 70.86+0.52 82.1541.7s 37424101 39.2541.12 25954087 7.89+0.58 43481117 64.784151 64.484153 60424141
Ours 73.40+0.56 83.124+1.52 39.23+1.08 43.2241.25 28.12540.02 12.6510.65 45.3241.22 66.1241.58 65.1241.55 62.1241.46
BiomedParse [32] 32.78+1.06 18.211075 303.441+1.05 46.19+132 85.8941.72 291.5141.04 75.43+1.64 65.35+151 213.17+180 77.444168
HD95| AIMT [31] 30.9440.03 17.3540.73 290.1641.94 45.82+130 83.8541.71 278.4241.93 73.65+1.62 66.124152 204.86+1.88 76.67+1.67

Ours 26.12.:955 15.3240.71 264.12+; 93 45.0111 28 80.1211 69 250.32:1.91 70.1241.59 67.12+; 53 190.1211 86 75.1241 65

continuous relationships. The integration of DRS further enhances the model’s
capabilities, reaching 85.38% DSC and 81.85% NSD by leveraging both local
and global contextual information. Finally, incorporating SATV provides better
alignment between text and volume features, achieving our best performance of
85.45% DSC and 82.17% NSD. These improvements are consistent across the
MSD Task01 brain tumor MRI dataset [1], where we observe similar progres-
sive enhancements from baseline (80.54% DSC, 69.60% NSD) to our full model
(83.52% DSC, 73.40% NSD). Our analysis of sub-volume depth d (Fig.4) shows
that performance improves rapidly as we increase the number of slices used for
modeling inter-slice relationships. While increasing sub-volume depth improves
performance, it adds computational cost. However, our method avoids introduc-
ing extra parameters like adapters [31, 19, 3, 25], resulting in lower overhead. As
shown in Table. 4, the optimal numbers of inter-slice head k& would be 1.

Table 3: Ablation study of key modules on Amos22  *° 8
dataset [14] and MSD Task01 dataset [1]. g, e
Dataset [Basc CSDHA DRS SATV] DSC(%)T __NSD(%)I __ HD95] g ree s
v 80.7330.35 78252045 88573.35 < 5 l g3 8
v v 85.014+0.38 80.32+0.33 68.12+2.10 = @
Amos22 [14] v v 85.38:£0.43 81.8540.48 54.85+3.40 = Le2 2
v v v v’ |85.45+0.45 82.17+0.50 52.17+3.55 g 15 .
—— Bio2Vol | g1
' 80.54+0.64 69.60+0.65 32.78+2.85 © —— AM
VA 82.84:0.61 71.20+£0.60 30.18+1.55
10 80
MSD TaskOL ) o, 83.05:£0.49 72.85+0.58 27.45+2.40 0o 1 3 5 7
' v v v’ |83.5240.59 73.40+0.56 26.12+2.55 Depth d
Performance and

Table 4: Analysis of inter-slice head k& on Amos22. Fig. 4:
- 5 i 5 i computation costs on the

DSC(%) 82.15£0.65 85.450.45 85.300.43 84.31%0.41 Amos22 dataset [14].

4 Conclusion

In this paper, we present Bio2Vol, a novel framework for adapting Biomed-
Parse [32] FMs to text-prompted 3D medical image segmentation. Our approach
bridges the gap between 2D biomedical foundation models and volumetric data
through three key innovations. Comprehensive evaluation across 11 CT and MRI
datasets demonstrates that Bio2Vol improves segmentation accuracy. Further-
more,our approach maintains computational efficiency without introducing extra
parameter for adoptatopm while preserving BiomedParse’s sophisticated 2D pre-
trained capabilities. This work establishes an effective paradigm for adapting 2D
biomedical foundation models to 3D medical image segmentation, with potential
applications to other 2D foundation models and medical imaging tasks.
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