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Abstract. Cardiac Magnetic Resonance (CMR) imaging is a vital non-
invasive tool for diagnosing heart diseases and evaluating cardiac health.
However, the limited availability of large-scale, high-quality CMR datasets
poses a major challenge to the effective application of artificial intelli-
gence (AI) in this domain. Even the amount of unlabeled data and the
health status it covers are difficult to meet the needs of model pretrain-
ing, which hinders the performance of AI models on downstream tasks.
In this study, we present Cardiac Phenotype-Guided CMR Generation
(CPGG), a novel approach for generating diverse CMR data that cov-
ers a wide spectrum of cardiac health status. The CPGG framework
consists of two stages: in the first stage, a generative model is trained
using cardiac phenotypes derived from CMR data; in the second stage,
a masked autoregressive diffusion model, conditioned on these pheno-
types, generates high-fidelity CMR cine sequences that capture both
structural and functional features of the heart in a fine-grained man-
ner. We synthesized a massive amount of CMR to expand the pre-
training data. Experimental results show that CPGG generates high-
quality synthetic CMR data, significantly improving performance on
various downstream tasks, including diagnosis and cardiac phenotypes
prediction. These gains are demonstrated across both public and private
datasets, highlighting the effectiveness of our approach. Code is available
at https://github.com/Markaeov/CPGG.

Keywords: High-Fidelity CMR Generation · Data Synthesis · Cardiac
Magnetic Resonance.

1 Introduction

Cardiac Magnetic Resonance (CMR) imaging is a critical non-invasive diagnostic
modality extensively employed for the diagnosis of cardiac diseases and the as-
sessment of heart health[3][20]. The availability of large-scale, high-quality CMR
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datasets is essential for advancing the development and clinical implementation
of artificial intelligence (AI) models in cardiac imaging. However, challenges re-
lated to data acquisition and privacy concerns have resulted in a scarcity of such
datasets, thereby limiting the potential of AI in CMR image analysis. Even the
amount of unlabeled data and the health status it covers are difficult to meet the
needs of model pretraining, which further impedes the performance of AI models
in clinical applications. To address these challenges, the application of genera-
tive AI for the creation of synthetic data have emerged as promising strategies
to enhance dataset availability and model performance.

Recent studies have shown that generative AI models can effectively syn-
thesize high-quality images in various medical imaging domains, such as cy-
topathological images [15][22], fundus images [25], chest X-ray images [4][9],
three-dimensional (3D) brain images [16], and echocardiogram (ECHO) videos
[5][13], thus enhancing the understanding of medical images and improving down-
stream analyses [18]. A common approach in these efforts involves using class la-
bels or textual descriptions as conditions to control the image generation process.
However, these conditions are inadequate for accurately describing the complex
health status of the heart, hindering fine-grained control over the generation pro-
cess to produce high-fidelity and diverse CMR data. Currently, there are only
a few studies exploring the synthesis of CMR. [1][24] employ the first frame
or mask as condition to synthesize CMR. However, the difficulty of obtaining
these conditions on a large scale itself limits the feasibility of large-scale data
generation. A closer parallel to our work lies in the synthesis of ECHO. [13]
uses the Left Ventricle Ejection Fraction (LVEF) as a conditioning variable to
generate echocardiogram videos. While this approach is valuable, the LVEF as
a single condition remains relatively limited in capturing the full spectrum of
cardiac health. Moreover, the direct application of a 3D diffusion framework for
ECHO synthesis [5][13][26] brings high training and inference costs, which hin-
der the generation of large-scale datasets necessary for model pretraining. These
challenges underscore the need for more sophisticated and scalable methods in
the generation of CMR images, where fine control over the synthesis of complex
cardiac features is required.

Cardiac phenotypes encompasses a set of clinically relevant measurements
extracted from CMR imaging, including key metrics such as LVEF and Left Ven-
tricular End-Diastolic Volume (LVEDV), which together provide a comprehen-
sive characterization of the heart’s functional and structural properties. These
phenotypes enable fine-grained, clinically interpretable control over the genera-
tion of CMR cine sequences, facilitating the creation of diverse, realistic samples
reflecting various cardiac health status. In this work, we propose a Cardiac
Phenotype-Guided CMR Generation framework, which addresses the
inherent complexity of high-dimensional CMR cine generation by de-
composing the process into two distinct, manageable stages. In the first
stage, we train a generative model that captures the underlying distribution of
cardiac phenotypes, effectively representing CMR data into a low-dimensional
space. In the second stage, we condition the CMR generation model on these car-
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diac phenotypes to generate CMR that exhibit diverse physiological characteris-
tics. To efficiently synthesize large-scale, high-quality CMR data for pretraining
purposes, we adopt a masked autoregressive model for CMR genera-
tion. This approach offers a substantial speedup in inference compared
to traditional autoregressive video generation models and 3D diffusion mod-
els—which often require extensive autoregressive steps or larger computational
resources. We introduce diffusion loss to replace vector quantization,
thereby enhancing responsiveness to fine-grained control. Leveraging
this framework, we generated a substantial volume of CMR data for pretrain-
ing and downstream tasks. Extensive experiments on the publicly available UK
Biobank (UKB) dataset, and a private dataset across various tasks, consistently
yielded state-of-the-art performance, proving the effectiveness of our approach.

2 Method

Fig. 1: Overview of our model. A and C describe a two-stage generation process.
B showed the details of the generation of each token.

Modeling the distribution of complex, high-dimensional cardiac MRI cines
presents a significant challenge. We propose a novel Cardiac Phenotype-Guided
CMR Generation (CPGG) framework, which decomposes the task of generating
cardiac MRI data into two more manageable subtasks, as illustrated in Fig. 1.

2.1 Cardiac Phenotypes Generation

The cardiac phenotype is a compact, low-dimensional representation derived
from CMR, encapsulating key functional and structural parameters of the heart.
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We use a generative model to capture their joint distribution. Our cardiac pheno-
types generative model is based on the architecture of a Variational Autoencoder
(VAE)[10], with stacked linear layers and LeakyReLU activation functions form-
ing the network for both the encoder and decoder. During inference, a latent
vector is sampled from a standard normal distribution and then decoded to
generate cardiac phenotypes, effectively creating new phenotypes data.

2.2 Masked Autoregressive CMR Generative Model without Vector
Quantization

Video generation using diffusion models and autoregressive generative models
has proven effective for synthesizing medical data, but the former is hindered by
high training and inference costs, making it difficult to generate large volumes
of data for pretraining and clinical applications, while the latter typically de-
pend on well-trained discrete codebooks[23], thus when dealing with continuous
fine-grained conditions such as cardiac phenotypes, this approach can lead to
suboptimal performance during the generation process. Motivated by the work
in [12], we introduce a masked autoregressive CMR generation model and elimi-
nate the need for vector quantization, as depicted in Fig. 1(c), to provide a faster
and more refined generation method.
3D-VAE We modify the VAE in stable diffusion[14] to a 3D-VAE to project
the input CMR into a compressed latent space by extending 2D convolutions
to 3D convolutions, the spatial downsampling factor, denoted as fs, and the
temporal downsampling factor, denoted as ft. For an input CMR C, with the
shape 1 × T × H × W , the compressed latent representation x has the shape
|x| × T

ft
× H

fs
× W

fs
, where |x| is the latent dimension.

Masked Autoregressive Model with Diffusion Loss The Masked Autore-
gressive Model (MAM) is a variant of the standard autoregressive model. In
contrast to traditional raster-order autoregression, MAM randomly predicts mul-
tiple tokens simultaneously based on the tokens that have already been observed
that allowing for more flexible and efficient token generation. This autoregressive
process can be formally expressed as:

P (X1, . . . , XK) =

K∏
k=1

P (Xk | X1, . . . , Xk−1), Xk = {x1, . . . , xi} (1)

where Xk represents the set of tokens predicted at the k-th step, xi denotes
an individual token. This design enables the parallel decoding of multiple to-
kens. We leverage Transformers as the backbone network for the masked au-
toregressive model, as bidirectional attention allowing all tokens to see each
other that efficiently model spatiotemporal dependencies. Our implementation
follows a framework similar to the Masked Autoencoder[7] (MAE). Specifically,
for a CMR compressed representation generated by a 3D-VAE encoder, we par-
tition the representation into non-overlapping tokens xi, each with a shape of
|x| × pt × ps × ps, where pt denotes the temporal stride and ps represents the
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spatial stride. These tokens are randomly masked, during training, a dynamic
masking ratio is applied, as used in [11][12].

We further incorporate a diffusion model to capture the distribution of each
token in continuous space, which we refer to as the token diffusion model. Let
xi represents a ground-truth token, and zi denote the vector embedded by the
autoregressive model at the corresponding position, i.e., zi = f(X1, . . . , Xk−1).
The objective is to model the distribution of xi conditioned on zi, that is, p(xi|zi).
We introduce the diffusion loss[12] to model this conditional distribution:

L(zi, xi) = Eε,t

[∥∥ε− εθ(x
t
i | t, zi)

∥∥2] . (2)

where ε denotes the noise vector sampled from N (0, I), and xt
i represents the

noisy token at the time step t, defined as xt
i =

√
ᾱtxi +

√
1− ᾱt ε, where ᾱt

is a noise schedule. The noise estimator εθ is implemented using a small MLP
network. The loss is only computed for masked tokens. During inference, we
iteratively sample xT

i to x0
i via a reverse diffusion procedure, defined as:

xt−1
i =

1
√
αt

(
xt
i −

1− αt√
1− ᾱt

εθ(x
t
i | t, zi)

)
+ σtδ. (3)

where xT
i and δ are sampled from N (0, I), σt is the noise level at time step t.

Cardiac Phenotypes Conditioning The cardiac phenotypes vector is pro-
jected into the token dimension through an MLP network, after which it is
concatenated to the start of the encoded sequence as the [CLS] token. This in-
put sequence is then processed using bidirectional attention, allowing each token
to incorporate the conditional information from the cardiac phenotypes.
Iterative Decoding We generate CMR cine sequences using an iterative decod-
ing strategy like the approach outlined in [11]. The process begins with an empty
CMR latent representation, where all tokens are masked. The iterative decoding
proceeds over K steps, during which the model predicts the remaining masked
tokens at each iteration, and the predicted tokens are randomly retained, mask-
ing ratio adhering to a cosine schedule. This ensures that the model progressively
refines the CMR representation across iterations.

3 Experiments

3.1 Datasets and Experiments Setting

In this study, we utilized four-chamber CMR cine sequences from the first imag-
ing assessment of the UK Biobank to construct datasets. A total of 32,444 CMR
cine sequences were screened, with 82 cardiac phenotypes[3] being complete and
available for CMR generation and cardiac phenotypes prediction. The dataset
was divided into 25,955 samples for the training set, 3,244 samples for the val-
idation set, and 3,245 samples for the test set. For the disease classification
task, we respectively selected 196, 5,464 and 578 participants to construct three
datasets: cardiomyopathy (UKB-CM), coronary artery disease (UKB-CAD) and
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heart failure (UKB-HF), ensuring a 1:1 ratio of positive to negative cases. Ad-
ditionally, we collected a separate cardiomyopathy dataset (CMDS) from the
Affiliated Hospital of Zhejiang University for tasks involving cardiomyopathy di-
agnosis (binary classification) and cardiomyopathy subtype classification (four-
class classification). This dataset comprises 535 samples, including 195 cases
of hypertrophic cardiomyopathy, 160 cases of dilated cardiomyopathy, 33 cases
of restrictive cardiomyopathy, and 147 healthy controls. We use five-fold cross-
validation for disease classification tasks.

For each dataset, we employed a segmentation model from [3] to extract the
heart region and resized to 1× 50× 96× 96. For the 3D-VAE, we set the latent
dimension |x| to 16, ft to 2, and fs to 8. In the masked autoregressive model,
we implemented a 12-layers encoder and decoder, with a latent dimension of 768
and a patch size of 5×2×2. The patch size was chosen to reduce computation, as
CMR data typically exhibit significant redundancy in the temporal dimension.
During training, we randomly sampled a mask ratio between 0.7 and 1.0. In the
diffusion process, we used a cosine-shaped noise schedule with 1000 steps during
training and 100 steps during inference. The denoising MLP was constructed
with 3 blocks and a width of 1024 channels. In the iterative decoding process,
we performed 16 steps to progressively generate CMR data. We implemented an
MAE-base[7] framework for pretraining, using a mask ratio of 0.75, with a patch
size of 16 × 16, the temporal dimension of CMR data is treated as the channel
dimension[6]. All experiments were performed on an NVIDIA A800 GPU. The
AdamW optimizer was employed for training, with a learning rate of 8e− 4 for
the CMR generative model, 5e−4 for model pretraining, and 5e−5 for finetuning
on downstream tasks. The generative and pretraining models were trained for
400 epochs, while finetuned models underwent training for 100 epochs.

3.2 CMR Generation Quality

We compare our approach with the previous state-of-the-art autoregressive gen-
erative model using vector quantization (VideoGPT) and 3D diffusion model
(ModelScopeT2V). As shown in Table 1, our model achieves better performance
on both Fréchet Inception Distance[8] (FID) and Fréchet Video Distance[17]

Table 1: Quantitatively evaluation of our CPGG model. The inference time is
the average time to generate each CMR with a batch size of 16 using one A800
GPU. CFG means classifier-free guidance.

Method FID↓ FVD↓ Inference time
VideoGPT[21](uncond) 40.58 1320.26

1.87 sec / vid.
VideoGPT(CFG=3.0) 36.32 1234.46

ModelScopeT2V[19](uncond) 50.86 1515.44
4.26 sec / vid.

ModelScopeT2V(CFG=3.0) 26.86 961.80
CPGG(uncond) 19.85 760.63

0.36 sec / vid.
CPGG(CFG=3.0) 15.14 711.17
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(FVD) metrics. We also observe that applying the proposed cardiac phenotype-
guided conditioning to each method improves generation quality, and our ap-
proach achieving the best performance. Furthermore, our model demonstrates
a significant speedup in inference compared to other models, making it possible
to synthesize large amounts of data for augmenting pretraining data. Figure 2
presents examples of generated CMR and their corresponding cardiac pheno-
types, ordered by LVEDV from small to large. It can be intuitively observed
that the generated CMR can respond well to fine-grained control of cardiac
phenotypes and exhibits high fidelity.

Fig. 2: Examples of generated CMR and their corresponding cardiac phenotypes
using the CPGG framework, ordered by LVEDV from small to large.

3.3 Performance of Downstream Tasks after Data Mixing

Disease Classification To further explore the usability of synthetic data, we
used the generated CMR to augment the pretraining data and compared perfor-
mance on the disease classification task. As shown in Table 2 and Table 3, as the
proportion of synthetic data gradually increases, we observe a corresponding im-
provement in classification performance across all datasets. When the amount of
synthetic data reaches five times that of the real data, a significant performance
improvement is achieved compared to pretraining with real data alone in all
datasets. Therefore, our method can be seen as an effective data augmentation
strategy that benefits both pretraining and the disease classification tasks.
Cardiac Phenotypes Prediction Furthermore, we conducted the cardiac phe-
notypes prediction task, the performance of several important phenotypes and
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the average R2 across 82 cardiac phenotypes prediction are reported in Table
2 and Fig 3. When only using synthetic data to augment the pretraining data,
we observed a gradual improvement in prediction performance. Building upon
this, incorporating the synthetic phenotypes-CMR data into the training set for
the cardiac phenotypes prediction task further improved the average R2. This
proves that the CMR data generated by our method has high fidelity and strictly
adheres to fine-grained conditions such as cardiac phenotypes.

Table 2: Performance of two downstream tasks on public datasets. The upper
part of the table is the disease classification task, and the lower part is the
cardiac phenotype regression task. * indicates that synthetic CMR data is used
not only for data augmentation in the pretraining stage but also as labeled data
for data augmentation during finetuning.

Disease UKB-CAD UKB-CM UKB-HF
Method ACC AUC ACC AUC ACC AUC
ViT[2] 0.681±0.005 0.741±0.014 0.730±0.018 0.778±0.064 0.732±0.015 0.800±0.026

MAE[7](real) 0.719±0.156 0.787±0.022 0.816±0.057 0.843±0.067 0.799±0.026 0.881±0.008
–mix 100% 0.726±0.078 0.804±0.012 0.821±0.046 0.863±0.041 0.836±0.017 0.892±0.013
–mix 200% 0.730±0.013 0.807±0.011 0.821±0.020 0.867±0.047 0.829±0.013 0.904±0.019
–mix 300% 0.731±0.012 0.809±0.015 0.831±0.035 0.876±0.041 0.834±0.034 0.900±0.020
–mix 400% 0.735±0.011 0.811±0.008 0.831±0.054 0.875±0.044 0.848±0.041 0.910±0.022
–mix 500% 0.739±0.014 0.812±0.012 0.841±0.043 0.878±0.036 0.844±0.038 0.913±0.031

Phenotype LVEDV(mL) LVEF(%) LVM(g) RVEDV(mL) RAEF(%)
Method MAE R2 MAE R2 MAE R2 MAE R2 MAE R2

ViT[2] 11.381 0.782 3.490 0.470 6.352 0.839 12.510 0.794 5.078 0.484
MAE[7](real) 10.826 0.806 3.553 0.457 6.479 0.836 12.048 0.808 5.102 0.474
–mix 100% 10.120 0.827 3.432 0.496 5.929 0.868 11.589 0.822 4.930 0.509
–mix 200% 10.200 0.826 3.396 0.503 5.568 0.876 11.368 0.830 4.816 0.527
–mix 300% 9.784 0.843 3.410 0.502 5.678 0.875 11.057 0.837 4.762 0.542
–mix 400% 9.721 0.844 3.328 0.523 5.540 0.883 11.201 0.837 4.544 0.577
–mix 500% 9.776 0.844 3.354 0.513 5.599 0.882 11.145 0.838 4.660 0.558
–mix* 100% 10.081 0.830 3.426 0.500 5.835 0.871 11.652 0.820 4.994 0.496
–mix* 200% 10.083 0.829 3.391 0.507 5.684 0.875 11.458 0.831 4.800 0.528
–mix* 300% 9.629 0.846 3.383 0.505 5.431 0.884 11.153 0.833 4.743 0.546
–mix* 400% 9.713 0.844 3.337 0.504 5.322 0.888 11.224 0.834 4.478 0.587
–mix* 500% 9.639 0.842 3.327 0.525 5.621 0.875 11.016 0.840 4.529 0.584

4 Conclusion

In this study, we propose a novel two stage framework for CMR synthesis. To
address the challenge of accurately generating the intricate structural and func-
tional details of the heart, we introduce a cardiac phenotypes generation model
at the first stage. By conditioning on these phenotypes, our approach efficiently
generates a large volume of high-fidelity CMR cine sequences at stage two to
augment pretraining data. Extensive experiments conducted on the large-scale,
publicly available UKB dataset, as well as a private cardiac disease dataset,



Phenotype-Guided Generative Model for CMR Synthesis 9

Table 3: Performance of disease classification
task on private dataset.

Dataset CMDSb CMDSf

Method ACC AUC ACC AUC
ViT[2] 0.759±0.025 0.696±0.055 0.555±0.017 0.718±0.061

MAE[7](real) 0.824±0.048 0.822±0.070 0.688±0.048 0.808±0.083
–mix 100% 0.824±0.055 0.838±0.066 0.708±0.039 0.836±0.054
–mix 200% 0.837±0.048 0.849±0.066 0.718±0.054 0.855±0.052
–mix 300% 0.837±0.038 0.842±0.064 0.735±0.034 0.849±0.049
–mix 400% 0.856±0.027 0.864±0.064 0.768±0.020 0.867±0.055
–mix 500% 0.841±0.038 0.869±0.055 0.757±0.042 0.872±0.043

b means binary classification. f means four-class classification

Fig. 3: Performance comparison
of mean R2 accross 82 cardiac
phenotypes.

validate the superiority of our method over state-of-the-art models in terms of
image synthesis, model pretraining and clinical applications.
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