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Abstract. Multimodal Large Language Models (MLLMs) show great
potential in medical tasks, but their elicited confidence often misaligns
with actual accuracy, potentially leading to misdiagnosis or overlooking
correct advice. This study presents the first comprehensive analysis of
the relationship between accuracy and confidence in medical MLLMs.
It proposes a novel method that combines Multi-Strategy Fusion-Based
Interrogation (MS-FBI) with auxiliary expert LLM assessment, aiming
to improve confidence calibration in Medical Visual Question Answering
(VQA). Experiments demonstrate that our method reduces the Expected
Calibration Error (ECE) by an average of 40% across three Medical
VQA datasets, significantly enhancing MLLMs’ reliability. The findings
highlight the importance of domain-specific calibration for MLLMs in
healthcare, offering a more trustworthy solution for AI-assisted diagnosis.

Keywords: Medical Visual Question Answering · Confidence Calibra-
tion · Multimodal Large Language Models

1 Introduction

Multimodal Large Language Models (MLLMs) [10,14,13,4] have demonstrated
significant application potential across various fields, due to their exceptional
ability to integrate textual and visual information. However, these models com-
monly exhibit over-confidence [28,12] in their predictions in practical applica-
tions, where there is a notable discrepancy between the confidence assigned to
their predictions and their actual accuracy. This issue is particularly pronounced
in high-stakes scenarios such as medical diagnosis. For instance, during clinical
diagnosis, doctors typically rely on an iterative cycle of hypothesis generation,
testing, and validation, integrating multi-source information such as patient his-
tory, laboratory results, and imaging data for comprehensive judgment. When
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MLLMs are introduced as decision-support tools, the confidence of their predic-
tions must be precisely calibrated to ensure that doctors can effectively utilize
the model’s recommendations. Respectively, over-confidence in erroneous pre-
dictions can lead to misdiagnosis, while under-confidence may cause doctors
to overlook correct advice. Therefore, calibrating the confidence of MLLMs in
Medical Visual Question Answering (Medical VQA) [7,9,11] tasks to ensure their
reliability has become an urgent need in the practical application of AI-assisted
diagnosis.

Although significant progress has been made in confidence calibration meth-
ods for Large Language Models (LLMs), the application of these methods in
multimodal scenarios, especially in the medical field, is still in its infancy. The
motivation for this study stems from the increasing prevalence of MLLMs in
medical applications and the practical need for these models to provide accurate
and reliable confidence estimates. By developing and evaluating confidence cal-
ibration methods specifically tailored for medical MLLMs, we aim to enhance
the credibility of these models in clinical settings, thereby assisting healthcare
professionals in making more accurate diagnostic decisions.
Related Work. In the field of confidence calibration for LLMs, there has
been considerable research. [5,27,15] Early methods primarily focused on us-
ing LLMs’ token-likelihoods [2,8,21,1] as confidence for calibration. However, as
such white-box methods are not applicable to closed-source commercial mod-
els like ChatGPT, recent research has gradually shifted towards calibrating the
verbalized confidence [28,17] of LLMs, which has been empirically shown to
achieve better calibration effects [24] compared to token-likelihood confidence.
Specific calibration methods include temperature scaling [21,26,1], prompting
strategy [28,17,24,22], and reinforcement learning-based methods [8,23]. Addi-
tionally, self-consistency methods based on repeated sampling [20] or multi-
sampling at different temperatures [28] have also proven effective in calibrat-
ing LLMs. Among these, prompting strategy has become the most widely used
calibration method due to its plug-and-play nature and good portability. By
designing a series of strategy templates, prompting strategy can effectively miti-
gate MLLMs’ over-confidence issue, thus this study also adopts this method. It is
noteworthy that in the medical field, limited related research [20,25] has mainly
focused on the calibration of LLMs, while multimodal calibration, especially in
Medical VQA, has not received sufficient attention. Although calibration strate-
gies for LLMs can be transferred to multimodal scenarios, the effectiveness of
these methods in the medical field has not been widely evaluated.

The main contributions of this study include the following three aspects:

• Empirical Study: We conducted the first comprehensive empirical study
on the relationship between the accuracy of MLLMs and their self-assessed
confidence in Medical VQA tasks, providing important insights into the cal-
ibration needs of multimodal LLMs in high-risk application scenarios.

• New Calibration Method: We proposed a new calibration method that
combines a Multi-Strategy Fusion-Based Interrogation (MS-FBI) system
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with an auxiliary expert LLM assessment framework to better calibrate con-
fidence scores with actual accuracy.

• Experimental Validation: We applied this method alongside various LLM
baseline methods to a Medical VQA dataset, and the results show that our
method significantly outperforms existing technologies, with an average im-
provement of 40% in Expected Calibration Error (ECE), demonstrating the
effectiveness of this method in real-world medical applications.

Q: Does the picture contain liver?
Provide your Answer and Confidence. 

User

Answer: Yes, the picture contains a liver. 
Confidence:  10 

MLLM

Answer: ...
Confidence:  9

＋Punish: You will be punished ... 

＋Challenge: I do not think your answer is right. Please…

＋Explain: Please explain why you give this answer.

Rebuttal: I apologize for the confusion. The image is a chest CT scan ...

Auxiliary LLM Assessment

Final Confidence:  7
Reasoning: According to the rebuttal ...

Well-Calibrated!

Q: Does the picture contain liver?
Provide your Answer and Confidence. 

Interrogation Scenario via MS-FBI

User

MLLM

User

MLLM

Phase1 - Initial Inquiry

Phase2 - Deep Inquiry

A Diagnosis Scenario

Conf.

Conf.

Expert LLM

Over-Confidence?

Fig. 1. The MLLM initially overconfidently identifies a liver in a chest CT scan.
Through a two-phase interrogation process (MS-FBI), including an initial inquiry and
deep inquiry with expert LLM assessment, the model’s confidence is adjusted to a
well-calibrated level.

2 Method

2.1 Overview

As shown in Figure 1, the proposed method consists of two core components: an
interrogation system based on a two-phase multi-strategy fusion approach (MS-
FBI, down left), for collecting empirical information; and an auxiliary expert
LLM assessment framework (down right), offering final judgement and analysis.
This workflow not only achieves calibration between confidence and accuracy but
also reveals MLLMs’ psychological state under different interrogation scenarios.
Through this systematic approach, we obtain auxiliary qualitative reasoning
information about the MLLM’s behavior, which provides potential opportunities
to further enhance question-answering accuracy through the calibration process.
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2.2 Multi-Strategy Fusion-Based Interrogation (MS-FBI)

Inspired by the lie detection process in criminal interrogations (FBI, e.g.) [16],
this study designs a interrogation system that integrates multiple strategies
based on prompt engineering, constructing a dynamically adaptive interroga-
tion scenario, and systematically capturing the deep cognitive information of
MLLMs.
Initial Inquiry Phase—Punishment Mechanism. In the first round of in-
teraction, the system requires the MLLM to simultaneously output the answer
A and its confidence score C for a Medical VQA question Q. This phase in-
troduces a penalty constraint mechanism (Punish) by conditionally embedding
the prompt "You will be punished if the answer is wrong but you answer it with
high confidence." This strategy aims to curb MLLMs’ overconfidence tendency
and encourage more cautious and accurate answers. With sampled and compa-
rable MLLM outputs, this design not only simulates the error cost mechanism
in real-world decision-making but also effectively evaluates MLLMs’ confidence
calibration characteristics under pressure.
Deep Inquiry Phase—Dual Verification Strategy. In subsequent interac-
tions, the system adopts a dual-track verification mechanism of Challenge and
Explain. By embedding prompts behind the context of the previous round of
dialogue, the system obtains MLLMs’ rebuttal Rmllm. Logical challenges ex-
pose contradictions in MLLMs’ reasoning chain through targeted questioning,
forcing it to review and correct its answers. This strategy draws on the core
principles of cognitive restructuring. Meanwhile, the explanation reinforcement
requires MLLMs to provide a step-by-step interpretation of its answer genera-
tion process, revealing potential knowledge gaps or logical flaws. The synergistic
application of these two strategies significantly enhances the detection efficacy
of deceptive responses. By combining Challenge and Explain strategies, the in-
terrogation process collects more detailed information about MLLMs’ reasoning,
which is crucial for accurately detecting overconfidence behaviors.
Strategy Combination. The overall prompt design references existing tem-
plates from relevant literature [17]. In practical application scenarios, the sys-
tem provides an expandable strategy combination space: the activation state of
the punishment mechanism constitutes a binary choice, while at least one of the
Challenge and Explain strategies must be activated, resulting in six combina-
tion modes (2×3). This modular design enables multi-dimensional exploration
of the MLLMs’ cognitive boundaries [8,12] through strategy combinations and
can be innovatively adjusted according to specific research needs.

2.3 Auxiliary Expert LLM Assessment

In this section, we template the previously collected information (Q, A, C,
Rmllm) and input it into an expert LLM (llama3-instruct-8B, in our practice)
for providing calibrated evaluation of the MLLMs’ responses. The expert LLM’s
output includes the reassessed confidence Cr adjusted based on the former inter-
rogation process, as well as the reasoning Rexp for Cr that helps better under-
stand the MLLMs’ behavior. This information can be used to comprehensively
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evaluate the MLLMs’ performance and identify areas where MLLMs may be
prone to errors or inconsistencies. By comparing C and Cr, MLLMs’ introspec-
tive ability can be quantified, while the Rexp generated by the expert LLM
reveals the MLLMs’ decision bias patterns, providing interpretable insights for
model optimization.

3 Experiments and Results

3.1 Experimental Setup

Datasets. We extensively evaluate our proposed method on three public medical
VQA datasets:

• Med-VQA [7]: contains over 4,000 medical images and 50,000 question-
answer pairs.

• VQA-RAD [9]: includes 315 radiological images annotated by clinicians
and 3,515 question-answer pairs.

• SLAKE [11]: a semantically annotated knowledge-enhanced medical VQA
dataset with 642 images and 14,000 bilingual question-answer pairs.
Ultimately, we select 1,179 closed-ended questions from the test sets of the

three datasets as a benchmark for evaluating MLLMs’ capabilities and self-
awareness.
MLLM Backbones. We test three MLLMs to evaluate their performance on
medical VQA tasks under various calibration methods (including ours):

• LLaVA-1.5-Med-Mistral-7b [10]: a multimodal large model specifically
designed for the biomedical field, demonstrates excellent cross-modal under-
standing abilities.

• LLaVA-NeXT-Mistral-7b [14]: an upgraded version of LLaVA-1.5 [13],
shows significant improvements in visual dialogue and reasoning capabilities.

• Molmo-7b [4]: a general-purpose MLLM developed by Ai2, and its smaller
parameter model outperforms models with 10 times more parameters.

• MedVLM-R1 [18]: a recent medical reasoning model that leverages rein-
forcement learning, specifically the GRPO algorithm, achieves strong results
in medical VQA.

Metrics. We evaluate MLLM calibration using two core metrics. Expected Cal-
ibration Error (ECE) [6] quantifies the deviation between model confidence and
predictive accuracy by partitioning confidence scores into M equally spaced bins
Bm (m = 1, . . . ,M). It calculates the weighted difference between average ac-
curacy and confidence within each bin. Due to its intuitiveness, it is also widely
regarded as the primary metric for assessing the calibration degree of models.
The metric is formulated as:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)| (1)



6 Y. Du et al.

Area Under Receiver Operating Characteristic Curve (AUROC) [3] assesses
confidence scores’ diagnostic capability in distinguishing correct predictions via
ROC curve integration. The metric is formulated as:

AUROC =
1

|C+||C−|
∑

Ci∈C+

∑
Cj∈C−

I(Ci > Cj) (2)

where Ci and Cj denote confidence scores for correct and incorrect predictions
respectively, and I(·) is an indicator function returning 1 when Ci > Cj and 0
otherwise.

Table 1. Performance comparison of different calibration methods across MLLMs and
medical VQA datasets (Values are converted to percentages, and the optimal and
suboptimal results in each column are highlighted in bold and underlined, respectively.
The same applies to Table 2.)

Model Method med-vqa vqa-rad slake Avg.
ECE↓ AUC↑ ECE↓ AUC↑ ECE↓ AUC↑ ECE↓ AUC↑

Llava-1.5-med-7B

Vanilla 47.71 48.46 39.44 50.63 45.70 49.36 44.28 49.48
Punish 46.68 48.47 38.31 51.30 42.43 49.55 42.47 49.77
Top-K 43.85 50.00 42.41 50.00 41.69 50.00 42.65 50.00
Ours 27.89 55.70 21.77 56.80 29.00 52.70 26.22 55.07

Llava-NeXT-7B

Vanilla 25.94 57.01 35.16 54.56 37.00 57.48 32.70 56.35
Punish 25.58 58.28 36.37 55.85 37.04 56.65 33.00 56.93
Top-K 27.80 47.43 33.69 54.03 36.88 53.25 32.79 51.57
Ours 13.80 58.44 20.90 56.88 19.52 55.73 18.07 57.02

Molmo-7B

Vanilla 25.08 51.45 30.28 49.87 26.87 54.45 27.68 51.92
Punish 23.54 51.69 32.47 46.98 29.35 50.19 30.91 49.62
Top-K 39.28 45.46 31.04 56.47 48.71 39.48 39.68 47.14
Ours 14.52 62.20 24.52 52.39 20.22 51.25 19.75 55.28

MedVLM-R1

Vanilla 20.82 49.15 25.59 54.95 30.46 44.81 25.62 49.64
Punish 24.58 49.71 27.63 57.59 33.44 42.38 28.55 49.89
Top-K 13.24 62.51 28.91 59.29 16.76 60.59 19.64 60.80
Ours 12.52 63.32 16.85 59.03 14.06 55.62 14.48 59.32

Baselines. We test the performance of three LLM confidence calibration meth-
ods:

• Vanilla [28]: directly extracts the model’s confidence in the verbal answer.
Its advantage is that it provides a basic confidence indicator without addi-
tional computation.

• Punish [17]: adds a prompt "You will be punished if the answer is wrong but
you answer it with high confidence" to encourage the model to be cautious
in answering.

• Top-K [24]: requires the model to provide k best guesses {G1, . . . , Gk} with
corresponding probabilities {P1, . . . , Pk}, eliciting verbalized likelihoods. For
fair comparison across methods, we apply computational normalization by
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scaling the maximum probability to confidence through linear transforma-
tion:

Confidence = max{P1, . . . , Pk} × 10. (3)

3.2 Main Results

As shown in Table 1, we evaluate four confidence calibration methods for the
medical VQA task through comparative experiments. Notably, our proposed
method outperforms the baseline methods across all the medical VQA datasets
and MLLMs, reducing the average ECE of LLaVA-1.5-med-7B from 44.28% to
26.22% (a 40.8% reduction) and increasing AUROC from 49.48% to 55.07%. This
demonstrates significant improvement in both calibration and the model’s abil-
ity to distinguish between correct and incorrect answers. Moreover, our findings
show that domain-specific characteristics significantly affect calibration perfor-
mance. General-domain MLLMs, like Molmo-7B, exhibit low ECE across cali-
bration methods, with its vanilla method achieving an average ECE of 27.68%.
In contrast, medical-domain MLLMs, such as LLaVA-1.5-med-7B, show persis-
tent overconfidence, with an average ECE of 44.28%, much higher than general-
domain MLLMs. This suggests that supervised fine-tuning (SFT) on domain-
specific data may impair confidence calibration [19].

Table 2. Performance comparison of different strategy combinations.

Method Llava-1.5-med-7B Llava-NeXT-7B Molmo-7B
med-vqa vqa-rad slake med-vqa vqa-rad slake med-vqa vqa-rad slake

Ch. 32.36 21.52 27.47 14.04 19.21 20.31 17.00 25.16 22.09
Exp. 34.46 21.53 35.93 16.92 26.49 26.15 27.72 28.03 29.57
Ch.+Exp. 30.51 20.82 30.74 14.42 21.04 22.19 21.80 25.95 25.96
Pu+Exp. 34.00 22.29 29.72 14.89 25.32 24.33 26.58 27.06 27.07
Pu.+Ch. 27.89 21.77 29.00 13.80 20.90 19.52 14.52 24.52 20.22
Pu+Ch+Exp. 29.28 17.90 25.77 13.88 22.37 21.54 20.52 25.45 23.12

3.3 Ablation Study

Ablation experiments reveal that strategy combinations significantly impact the
calibration performance of medical visual question answering models, measured
by ECE. The Punish only approach (Pu.) was excluded from the table as it
omitted the model’s rebuttal phase, making the expert model’s calibrated con-
fidence scores unreliable. The Punish and Challenge (Pu.+Ch.) combination
proved most effective on the Llava-1.5-med-7B model, with an ECE of 27.89%,
and also demonstrated optimal performance in cross-model scenarios, reducing
Molmo-7B’s ECE by 14.6%. However, strategy effectiveness is not tied to com-
plexity, as combining all three methods yielded suboptimal results.

Furthermore, the experiments show cross-model heterogeneity: the single
Challenge (Ch.) strategy was superior for the Llava-NeXT-7B model on the
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vqa-rad dataset, while Pu.+Ch. performed best on the slake dataset for multi-
ple models. This variation stems from pre-training differences, where overconfi-
dent models like Llava-Med benefit from multi-strategy intervention, while more
capable models like Molmo-7B perform better with simpler strategies.

Fig. 2. Visualization analysis of the confidence (x-axis) vs. accuracy (y-axis) calibration
comparison across different baselines (including ours), with all datasets aggregated.

3.4 Visualization and Analysis

Figure 2 demonstrates a comparison of the calibration effects between different
calibration methods across three datasets, with confidence (x-axis) and accuracy
(y-axis). The visual analysis reveals significant differences in calibration charac-
teristics under various models (Llava-med, Llava-NeXT, and Molmo) for each
calibration method. Specifically, the Llava-med model exhibits a clear calibration
underperformance under the Vanilla method, showing a significant discrepancy
between confidence and accuracy. In contrast, our MS-FBI method substantially
reduces the gap between confidence and accuracy, showing superior calibration
performance. Similar trends are observed in the Llava-NeXT and Molmo models,
confirming the method’s advantage in cross-model generalization. Overall, the
method proposed in this paper demonstrates the best calibration effects across
all models and datasets, effectively enhancing the consistency between model
confidence and accuracy.

4 Discussion and Conclusion

This study is the first to combine multi-strategy fusion-based interrogation with
expert LLM evaluation framework to explore the calibration of medical MLLMs,
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achieving significant progress. The experiments show that the proposed method
effectively improves the alignment between model confidence and prediction ac-
curacy, and reveals MLLM’s decision-making patterns in complex medical sce-
narios through a multi-round interrogation mechanism. Ablation experiments
confirm the contributions of optimization strategies and expert LLMs to the
calibration effect, providing support for enhancing model reliability.

Although the generalizability of the method has been preliminarily validated,
more refined calibration strategies may be needed in the case of general LLMs.
The study also highlights key future research directions, such as domain-specific
calibration for medical models, unification of expert evaluation standards, and
achieving efficient calibration without increasing computational costs. Address-
ing these issues will advance MLLM calibration technologies and provide more
reliable intelligent tools for clinical decision support systems.
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