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Abstract. Multi-label classification (MLC) in medical image analysis
presents significant challenges due to long-tailed class distribution and
disease co-occurrence. While contrastive learning (CL) has emerged as
a promising solution, recent studies primarily focus on defining positive
samples, overlooking the low gradient problem associated with single-
disease representation and the impact of co-occurring diseases. To ad-
dress these issues, we propose ws-MulSupCon, a novel weighted stratifi-
cation method in CL for MLC. Our gradient analysis indicates that sep-
arating the single-disease cases can amplify their gradient contributions.
Accordingly, we stratify training samples into single- and multi-disease
cases to enhance the representation learning of each disease. Moreover,
we design a weighted loss function based on class frequency and disease
comorbidity, mitigating the dominance of prevalent diseases and improv-
ing rare disease detection. To further discriminate between the healthy
and diseased samples, a dedicated CL for healthy cases is introduced, im-
proving overall classification performance and preventing false positives.
Extensive experiments on NIH ChestXRay14 and MIMIC-CXR demon-
strate that ws-MulSupCon outperforms SoTA methods across nearly all
disease classes, showing its superiority and the effectiveness of learning
long-tailed distribution in multi-label medical image classification. The
code is available at https://github.com/xup6YJ/ws-MulSupCon.

Keywords: Multi-label classification · Contrastive learning · Long-tailed
distribution.

1 Introduction

Multi-label classification (MLC) is a critical challenge in medical image [2,8,18,22]
and computer vision [4,13,15,24] domains. MLC is particularly prevalent in med-
ical diagnostics in modalities such as chest X-rays (CXR) and ophthalmoscopy,
where a single examination image often captures multiple co-occurring diseases.
Additionally, MLC poses greater challenges than single-label classification due to
the intricate relationships between diseases, the similarities in disease character-
istics on medical images, and the long-tail distribution of the collected data. The
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scarcity of rare disease cases results in an imbalanced data distribution, leading
to strong performance on prevalent diseases (head classes) while yielding poor
results for rare conditions (tail classes) [21]. These issues highlight the inherent
complexities of MLC in medical image analysis.

In recent years, contrastive learning (CL) has demonstrated remarkable per-
formance in feature representation learning [3,6,11]. The core of CL lies in
defining positive and negative samples to learn and distinguish discriminative
features. However, self-supervised CL treats each instance as a unique class,
leading to the class collision problem [23] and misclassification of semantically
similar samples as negatives. To overcome this problem, SupCon [11] extends
CL to supervised settings by utilizing label information for more effective pos-
itive/negative sample selection. Nonetheless, determining positive samples in
MLC remains a significant challenge compared to single-label classification. While
prior efforts have advanced the integration of supervised CL into MLC [1,5,14,20],
they primarily focus on the relationship between a sample and its corresponding
label set [19], neglecting the complex and diverse data distribution in multi-label
scenarios which might hinder the generalization ability of the model.

Recent studies explore the relationship between the labels of different sam-
ples. MulSupCon [19] introduces two scenarios in MLC and defines them as
ANY, where a sample shares at least one label with the anchor, and ALL for
exactly matching the label set of the anchor. Through gradient analysis, they
treat each anchor label independently and construct multiple positive sets for a
single anchor sample. Huang et al. define the positive samples in ANY scenario
and design the Similarity-Dissimilarity Loss to consider the various relations be-
tween samples and anchors [9]. SoftCon [17] assigns soft similarity scores to each
sample pair, degrading the multi-label task into a single-label task. However,
these methods still have several limitations in medical image scenarios. First,
neglecting the distinction of feature representation between single- and multi-
disease cases. Single-disease cases exhibit simpler feature representations, while
multi-disease cases present more complex features due to co-occurring diseases.
Computing contrastive loss without considering this distinction might limit the
ability of the model to learn individual disease representations effectively, thereby
limiting its capability to learn multi-disease cases. Second, the characteristics of
comorbidities have not been sufficiently explored and incorporated into existing
multi-label CL methods. Third, the problem posed by the long-tailed nature
of medical image datasets remains largely unaddressed. These issues limit the
learning efficacy in multi-label medical image classification.

To conquer these challenges, we proposed a novel CL method for MLC named
ws-MulSupCon for seamless integration into convolution-based backbones. The
main contributions of this work are as follows: (1) We conduct a gradient analysis
and highlight the issue of low gradients in the contrast between anchors and
single-disease samples, addressing a critical limitation in existing methods. (2)
We propose a novel multi-label CL method that stratifies samples into single-
and multi-disease cases, enabling the model to capture precise representations of
each disease effectively. (3) To the best of our knowledge, this is the first multi-
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Fig. 1. Gradient illustration for MulSupCon [19]. MulSupCon considers each label
separately and forms multiple positive sets for each anchor (blue boxes). Blue dots
indicate the classes to which each sample belongs. Rows with circles outlined by dotted
lines signify samples categorized in the negative set, while all other samples are assigned
to the positive set. The notation g represents the gradient with the corresponding
positive sample. The red boxes highlight single-disease cases where the gradient is
weakened due to averaging with multi-disease cases.

label CL approach that simultaneously considers the challenges of long-tailed
data distribution and inter-disease relationships. (4) Experimental results on
two benchmark datasets validate the effectiveness of ws-MulSupCon in learning
from long-tailed distribution, significantly reducing false positives compared to
the loss-based method and achieving state-of-the-art (SoTA) performance.

2 Methodology

2.1 Preliminaries

For a batch of N samples and their corresponding labels, denoted as B =
{(xi,yi) | i = 1, 2, . . . , N}, each sample xi is associated with a multi-label set
yi = {yij | j = 1, . . . , L}, where yij ∈ {0, 1} denotes the j-th label among a total
of L classes. Following MulSupCon [19], which builds upon MoCo [6], zq and
zk denote the query and key representations generated from a gradient descent-
updated encoder and a momentum-updated encoder, respectively. Additionally,
a queue Q is maintained to store zk from previous batches as proposed in MoCo,
facilitating efficient contrastive learning.

2.2 Multi-label contrastive learning

Gradient analysis. The loss function of MulSupCon is defined as:

LMulSupCon =
1∑
i |yi|

∑
i

∑
j

−1∣∣Pi
j

∣∣ ∑
p∈Pi

j

log
es

i
p/τ∑

a e
sia/τ
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Fig. 2. Gradient illustration for single- and multi-disease cases stratification. Single-
disease cases, representing simpler disease features, can contribute larger gradients,
thereby enabling the model to learn more precise and distinct disease characteristics.

where Pi
j =

{
a | yij = yaj = 1, a = 1, ..., |A|

}
is a separate positive set of each

disease j. Here, A = fθm(B) ∪ Q represents all the features involved in con-
trastive loss computation, where fθm denotes the momentum-updated encoder
and |A| = |B|+ |Q|. The notation sin = ziq ·znk denotes the inner product between
the query and key representations. As illustrated in Fig. 1 with an example of two
anchors, we can observe that the gradient in the contrast between anchors and
single-disease cases is diminished by averaging with multi-disease cases. Since
multi-disease cases exhibit more complex feature representations, we argue that
single-disease cases should contribute larger gradients to better capture distinct
and unambiguous disease characteristics. However, MulSupCon computes the
loss for both cases jointly, diluting the gradients in single-disease samples.
Sample Stratification. To solve the aforementioned limitation, we stratify all
the positive samples into single- and multi-disease cases to do CL while decou-
pling the loss into Ls and Lm, which can be defined as:

Ls =
1∑

is
|yis |

(
∑
is

−1∣∣Pis
s

∣∣ ∑
p∈Pis

s

Ss +
∑
is

−1∣∣Pis
m

∣∣ ∑
p∈Pis

m

Ss) , (2)

Lm =
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|yim |

(
∑
im

∑
j
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s

Sm +
∑
im

∑
j
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m
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m

Sm) , (3)

where Ss = log es
is
p /τ∑

a es
is
a /τ

and Sm = log es
im
p /τ∑

a es
im
a /τ

. Here, is, im represent the

indices of single- and multi-disease anchors, respectively, while Ps and Pm cor-
respond to the positive sample set with single- and multi-disease. Note that we
omit the notation j in Ps and Pm for simplicity. The gradient of our proposed
stratification method is illustrated in Fig. 2. However, a potential problem in
multi-disease-related contrasts is that the gradients of g(3) and g(5) in ∇1 are
identical, despite sample 3 exhibiting a more intricate representation due to
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its higher disease complexity. To further differentiate disease relationships, we

weight the loss functions by the intersection over union, Wi
p =

|yi∩yp|
|yi∪yp| between

the anchor and sample. Therefore, the gradients in Fig. 2 will finally become:

∇1 ≈ g(1) +
1
3g

(3) + 1
2g

(5)

2
. (4)

∇2 ≈ 1

2
g(1) +

2
3g

(3) + g(5)

2
+

1

2
g(6) +

1
4g

(2) + 2
3g

(3) + g(5)

3
. (5)

This design prioritizes the contrasts between the anchor and the sample with
similar disease characteristics by assigning them larger gradients, thereby en-
hancing the ability of model to capture complex multi-disease representations.
Weighted Stratification. To conquer the challenge posed by long-tailed dis-
tribution, we weight Lsingle with a parameter D̄, which can be defined as follows:

Lws =
1∑

is
|yis |

(
∑
is

−1∣∣Pis
s
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p∈Pis

s

D̄jWis
p Ss +

∑
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m
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m

D̄jWis
p Ss) , (6)

where D̄j =
D−dj

D , dj denotes the number of cases with a certain disease j in
the training data, and D =

∑
j dj is the sum of all the disease cases. By lever-

aging the disease distribution from the training dataset, this strategy effectively
accounts for rare classes by assigning them higher weights, ensuring that their
representations are adequately emphasized during training. On the other hand,
to further consider the relationships between diseases, we weight Lmulti with the
reciprocal of the mean comorbidity score of each disease, which is defined as:

Lwm =
1∑

im
|yim |

(
∑
im

∑
j
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, (7)

where C̄j =
1

Cj/Mj
, Cj denotes the comorbidity score, indicating the total count

of co-occurring diseases with j-th disease across all multi-disease cases, Mj de-
notes the number of multi-disease cases containing the j-th disease. A higher
mean comorbidity score for a disease class signifies that its features are more
frequently encountered by the model due to its frequent co-occurrence with
other diseases in multi-disease cases. Additionally, given that the classification
performance of a disease is strongly related to its co-occurrence with other dis-
eases [8], we incorporate the reciprocal of the mean comorbidity score to amplify
the disease representations that are less frequently observed by the model in
multi-disease CL. As the loss function establishes multiple positive sample sets
for each class of the anchor, it can be weighted individually using C̄j to better
reflect the comorbidity situation of each disease class.
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Healthy case contrastive learning. In Lsingle and Lmulti, we exclude healthy
samples from the positive pairs to emphasize disease samples and prevent healthy
samples from dominating the gradient during positive pair construction. Nev-
ertheless, healthy samples are included in the negative pairs to ensure effective
discrimination between disease and healthy samples. To further enhance the
separation between disease and healthy cases in the embedding space, we intro-
duce dedicated CL for healthy cases, enabling the model to distinguish between
healthy and diseased cases more effectively. The loss function can be defined as:

Lh =
1

|H|

|H|∑
i

−1

|Ph|
∑
p∈Ph

log
es

i
p/τ∑

a e
sia/τ

, (8)

where H denotes the set of healthy anchor samples and the positive set Ph ={
a | |ya| = 0, a = 1, ..., |A|

}
contains the healthy samples only. Finally, the over-

all loss function can be defined as:

Lall = (1− λ)(Lws + Lwm) + λLh , (9)

where λ serves as a hyperparameter to balance the contributions of disease sam-
ple contrast and healthy sample contrast in the overall training process.

3 Experiments

Datasets and preprocessing. In this study, we utilize two large-scale CXR
datasets, NIH ChestXRay14 (CXR-14) [16] and MIMIC-CXR (MIMIC) [10], to
evaluate the performance of the proposed ws-MulSupCon method. The CXR-14
dataset comprises 112,120 frontal CXR images spanning 14 disease classes, while
MIMIC includes 377,110 CXR images covering 13 disease classes. For MIMIC,
we focus on the commonly used posterior-anterior (PA) direction images, re-
taining 96,155 CXR images for analysis. All images are resized into 224 × 224.
Data augmentation for CL includes random horizontal flipping and random ro-
tation in the range of −20 to 20 degrees to enhance robustness. Each dataset
is randomly split at the patient level to ensure no sample overlap across the
training, validation, and test sets, which comprise 70%, 10%, and 20% of the
data, respectively.
Implementation details. In the pretraining phase, we train the model for
100 epochs using the Adam optimizer with an initial learning rate of 5 × 10−4,
managed by a cosine learning rate scheduler and a batch size of 64. Aligning
to the same backbone model in MulSupCon, we utilize ResNet-50 [7] as our
encoder. For the downstream task, the model is fine-tuned for 100 epochs using
the Adam optimizer with the same initial learning rate of 5× 10−4 and a batch
size of 32. The learning rate is reduced by a factor of 0.1 when the validation
loss plateaus. The model is trained from scratch using BCE loss. The optimal
value of λ is determined via a comprehensive search over the interval [0,1], with
stable performance within ±0.5. Based on empirical results, λ is set to 0.7 for
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Table 1. Results of performance comparison. The best scores are highlighted in red,
and the second-best in blue.

Dataset Type Method mAUC mi-F1 ma-F1 mi-R ma-R mi-P ma-P
CXR-14 Loss TWML (CVPR’23) [12] 80.62 32.94 25.84 64.84 45.56 22.07 18.69

CL MulSupCon (AAAI’24) [19] 80.41 14.81 8.55 8.65 5.60 51.57 46.36
Sim-Diss (arXiv’24) [9] 77.70 8.96 3.89 4.88 2.50 54.51 45.21
SoftCon (GEOSCI’24) [17] 80.11 15.03 8.47 8.78 5.51 52.02 48.27
ws-MulSupCon (Ours) 81.99 20.44 12.95 12.82 8.73 50.45 47.79

MIMIC Loss TWML (CVPR’23) [12] 81.72 44.12 30.95 59.53 41.44 35.05 27.23
CL MulSupCon (AAAI’24) [19] 81.04 31.18 16.89 20.67 12.91 63.45 56.32

Sim-Diss (arXiv’24) [9] 80.64 29.56 14.85 19.20 11.51 64.23 55.39
SoftCon (GEOSCI’24) [17] 81.70 32.49 18.14 21.75 13.69 64.20 52.35
ws-MulSupCon (Ours) 82.33 34.75 20.48 23.92 15.54 63.48 58.08

Table 2. AUC comparison of all the classes on CXR-14.

Method Inf. Eff. Ate. Nod. Mass Pneumot. Con. Ple. Car. Emp. Ede. Fib. Pne. Her.
TWML 70.61 87.49 79.14 70.81 82.20 83.64 79.27 76.82 90.25 85.76 89.07 75.57 72.95 85.09
MulSupCon 70.25 87.17 78.54 71.62 81.68 84.16 80.18 75.94 90.35 84.64 88.71 74.12 73.52 84.88
Sim-Diss 69.59 85.74 77.55 67.39 75.29 81.87 79.15 72.89 87.48 79.66 88.30 70.64 72.31 79.97
SoftCon 70.22 87.07 78.70 70.72 81.05 83.57 79.43 75.98 89.88 84.05 89.15 74.99 73.25 83.42
Ours 71.33 87.79 79.46 75.10 83.68 85.99 80.17 76.86 90.68 88.92 89.58 77.31 74.93 86.02

CXR-14 and 0.75 for MIMIC. All implementations are conducted in PyTorch
and executed on an NVIDIA 4090 GPU.
Performance comparison. We conduct a comprehensive comparison of ws-
MulSupCon against several SoTA multi-label classification methods, as detailed
in Table 1. The evaluated methods include the loss-based Two-Way Multi-Label
Loss (TWML) [12] and CL-based studies such as MulSupCon [19], Sim-Diss [9],
and SoftCon [17]. Performance is measured using seven key metrics: mAUC,
micro/macro F1, micro/macro Recall, and micro/macro Precision. To ensure a
fair comparison, all methods are trained under identical settings and backbone.
Note that the loss-based method does not need to be pretrained. Source codes
are obtained from official repositories where available, while Sim-Diss [9] and
SoftCon [17] are implemented by us due to the absence of published codes.

As shown in Table 1, ws-MulSupCon achieves SoTA performance, attaining
the highest mAUC of 81.99% on CXR-14 and 82.33% on MIMIC. Compared to
the best results in other CL-based approaches, it improves mAUC by 1.58%,
micro-F1 by 5.41%, macro-F1 by 4.4%, micro-recall by 4.04%, and macro-recall
by 3.13% on CXR-14; and mAUC by 0.63%, micro-F1 by 2.26%, macro-F1 by
2.34%, micro-recall by 2.17%, and macro-recall by 1.85% on MIMIC, underscor-
ing its superiority in disease detection. In contrast to the CL-based methods
fine-tuned with BCE, the TWML attains high recall rates by heavily weighting
positive disease classes in the loss design. However, this overemphasis results in
elevated false positives, leading to decreased precision and a lower mAUC com-
pared to the proposed method. Notably, ws-MulSupCon effectively balances re-
call and precision, ensuring robust diagnostic performance across both datasets.
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Table 3. AUC comparison of all the classes on MIMIC.

Method Opa. Ple. Ate. Pne. Car. Ede. Sup. Les. Enl. Con. Pneumo. Fra. other
TWML 76.52 94.02 83.44 76.93 86.29 90.07 84.95 71.56 77.46 82.85 89.91 69.55 78.84
MulSupCon 76.23 93.88 83.31 76.26 86.00 89.75 84.97 70.45 77.23 82.52 88.56 67.72 76.72
Sim-Diss 76.29 93.76 82.71 75.91 85.53 89.78 84.01 70.24 76.73 81.80 88.52 66.57 76.50
SoftCon 76.97 94.06 83.30 77.11 86.13 89.95 84.89 71.72 77.85 83.02 89.91 69.01 78.12
Ours 78.04 94.41 84.27 78.42 86.31 90.45 84.99 72.91 77.91 83.76 90.45 69.62 78.78

Table 4. Ablation studies for loss function design.

Dataset Method mAUC mi-F1 ma-F1 mi-R ma-R mi-P ma-P
CXR-14 Baseline 80.41 14.81 8.55 8.65 5.60 51.57 46.36

Stratified 81.32 17.70 11.32 10.68 7.50 51.76 42.54
Stratified+weighted 80.93 18.89 12.28 11.61 8.25 50.73 43.45
ws-MulSupCon 81.99 20.44 12.95 12.82 8.73 50.45 47.79

MIMIC Baseline 81.04 31.18 16.89 20.67 12.91 63.45 56.32
Stratified 81.69 32.63 18.36 21.83 13.70 64.61 58.82
Stratified+weighted 81.55 34.48 19.52 23.96 15.01 61.47 53.49
ws-MulSupCon 82.33 34.75 20.48 23.92 15.54 63.48 58.08

Moreover, we assess AUC for all classes across both datasets to validate the
effectiveness of ws-MulSupCon in learning long-tailed distribution, as detailed in
Tables 2 and 3. Note that the diseases in the tables are sorted by sample count
in descending order. Apart from a slight 0.01% decrease in AUC for the “con-
solidation” class on CXR-14 and a 0.06% reduction for the “pleural other” class
on MIMIC, our proposed method consistently outperforms competing methods,
achieving the highest AUC across nearly all disease classes. This underscores the
strength of ws-MulSupCon in handling long-tailed data distribution.
Ablation study. To evaluate the impact of each design in ws-MulSupCon, we
conduct a comprehensive ablation study on both datasets, as summarized in Ta-
ble 4. Utilizing MulSupCon as the baseline, stratifying the samples into single-
and multi-disease cases amplifies the gradient contrast between anchors and
single-disease cases. This results in notable performance improvements, with in-
creases in mAUC, micro-F1, macro-F1, micro-recall, and macro-recall by 0.91%,
2.89%, 2.77%, 2.03%, and 1.9% on CXR-14, and by 0.65%, 1.45%, 1.47%, 1.16%,
and 0.79% on MIMIC, respectively. These results highlight the importance of
explicitly modeling single-disease characteristics. Further enhancements with
the weighting factors D̄ and C̄ yield additional gains of micro/macro-F1 and
micro/macro-recall despite a slight decline in mAUC on both datasets. This
suggests that incorporating both class frequency and comorbidity scores im-
proves recall but introduces a higher false positive rate. Finally, the integra-
tion of healthy case CL further enhances the discrimination between disease
and healthy feature representations, resulting in SoTA performance across all
evaluation metrics. Notably, the consistent improvement in macro-level metrics
demonstrates the effectiveness of ws-MulSupCon in tackling the challenge of rare
disease classification, addressing a longstanding issue in medical image analysis.
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4 Conclusion

In this paper, we propose ws-MulSupCon, a novel CL framework for multi-label
medical image classification. Our method strategically stratifies the samples into
single- and multi-disease cases, assigning higher gradient contributions to single-
disease-related features to enhance representation learning. To address challenges
associated with long-tailed distribution and disease co-occurrence, we design two
weighted parameters to mitigate biases toward frequent classes. Additionally, we
incorporate a healthy case CL to refine the ability of the model to distinguish
between healthy and diseased cases. Comprehensive experiments validate the
effectiveness of ws-MulSupCon in achieving SoTA performance.
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