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Abstract. Tooth segmentation in Cone-Beam Computed Tomography
(CBCT) remains challenging, especially for fine structures like root
apices, which is critical for assessing root resorption in orthodontics.
We introduce GEPAR3D, a novel approach that unifies instance detection
and multi-class segmentation into a single step tailored to improve root
segmentation. Our method integrates a Statistical Shape Model of denti-
tion as a geometric prior, capturing anatomical context and morpholog-
ical consistency without enforcing restrictive adjacency constraints. We
leverage a deep watershed method, modeling each tooth as a continuous
3D energy basin encoding voxel distances to boundaries. This instance-
aware representation ensures accurate segmentation of narrow, complex
root apices. Trained on publicly available CBCT scans from a single cen-
ter, our method is evaluated on external test sets from two in-house and
two public medical centers. GEPAR3D achieves the highest overall seg-
mentation performance, averaging a Dice Similarity Coefficient (DSC)
of 95.0% (+2.8% over the second-best method) and increasing recall
to 95.2% (+9.5%) across all test sets. Qualitative analyses demonstrated
substantial improvements in root segmentation quality, indicating signifi-
cant potential for more accurate root resorption assessment and enhanced
clinical decision-making in orthodontics. We provide the implementation
and dataset at github.com/tomek1911/GEPAR3D.

Keywords: Tooth segmentation · Geometry prior · Root resorption

1 Introduction

CBCT is essential in digital dentistry, yet manual tooth segmentation remains
labor-intensive and inconsistent [32]. Automated methods support treatment
planning and diagnostics [14], but delineating tooth roots remains challenging

https://github.com/tomek1911/GEPAR3D
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Fig. 1. An overview of GEPAR3D, which unifies instance detection and multi-class seg-
mentation for precise tooth root segmentation. (a) Crops the region of interest (ROI)
during inference. (b) Simultaneously performs multi-class segmentation and instance
regression. (c) Regularizes segmentation loss Lseg with a geometric prior from an SSM
of normal dentition [15]. (d) Uses instance regression task LEDT to generate energy
maps for the Deep Watershed Algorithm. (e) Captures complex root apex geometries
via Energy Direction loss Ldir. Finally, (f) assigns each detected instance a class via
majority voting based on segmentation outputs.

due to their intricate morphology and small size. Accurate segmentation is par-
ticularly important for assessing root resorption [26], a pathological loss of dentin
and cementum often caused by orthodontic tooth movement, which can weaken
stability and, in severe cases, increase the risk of tooth loss. Tooth geometry ex-
hibits universal patterns, with teeth arranged in two arches and four quadrants,
and although individual variability exists, key anatomical features remain sta-
ble [17]. Demonstrating this structural consistency, the upper molars typically
have three roots, while the lower ones usually have two [31]. Leveraging inherent
geometric priors may provide valuable guidance for enhancing the accuracy and
robustness of automated segmentation.

Tooth segmentation has evolved from heuristic, hand-crafted methods to deep
learning [24]. Early deep learning approaches rely on voxel-wise classification and
overlook anatomical structure and inter-class relationships, both essential for
capturing detailed tooth morphology, especially root regions [8,18,4,28]. To re-
duce computational costs, many methods use multi-step coarse-to-fine pipelines
that isolate individual teeth in bounding boxes [5,9,13,16,29]. Such pipelines
tend to accumulate errors and disconnect each tooth from its broader anatom-
ical context, impairing root apex segmentation. Recent methods integrate prior
anatomical knowledge to guide segmentation. ToothSeg [9] enforces shape con-
sistency via tooth skeletons but relies on manual thresholds and post-processing,
limiting generalization. Other methods incorporate spatial relationships via ad-
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jacency constraints; SGANET [19] uses rigid graph convolutions to enforce local
consistency of immediate neighbors, while TSG-GCN [21] learns dynamic ad-
jacency but remains vulnerable to data bias since its geometric priors derive
solely from training labels. These constraints highlight the need for a method
that integrates anatomical structure and inter-class dependencies to achieve a
coherent, context-rich representation for accurate root segmentation.

To achieve that, we propose GEometric Prior-Assisted LeaRning for 3D
(GEPAR3D), a novel approach that unifies instance detection and multi-class seg-
mentation in a single step. Our method integrates a Statistical Shape Model
(SSM) [15] of dentition as a geometric prior, based on inter-teeth distances,
to embed anatomical context and morphological consistency into the learning
process. Furthermore, we leverage a deep watershed method and model each
tooth as a continuous 3D energy basin, encoding voxel distances to boundaries,
and predicting directional gradients to capture subtle variations at root apices.
Trained on publicly available CBCT scans from a single center and evaluated
on external test sets from four medical centers (two in-house and two public),
GEPAR3D demonstrates robust generalization across diverse patient demograph-
ics. Our method outperforms five state-of-the-art methods, achieving the highest
segmentation performance with an average DSC of 95.0% (+2.8%) and RC of
95.2% (+9.5%) across all test sets, offering new prospects for reliable root re-
sorption assessment and improved clinical decision-making.

2 Methodology

Fig. 1 overviews GEPAR3D, an encoder-decoder model with dual decoders for
multi-class segmentation and instance regression. The segmentation branch clas-
sifies 32 tooth categories with SSM-based regularization, while the regression
branch models instances as energy basins guided by energy descent. Each de-
tected instance receives class votes from the multi-class segmentation branch,
and the final class assignment is determined through majority voting.
Geometric prior. To enhance root segmentation in CBCT scans, we inte-
grate an SSM [15] as a geometric prior. This 3D atlas of normal dentition,
built from representative Korean individuals (47 males, 37 females), guides seg-
mentation via extracted inter-tooth distances; see [15] for more details on de-
mographics. To capture statistical tooth positions, we represent each tooth’s
geometric center as Gi = (xi, yi) in a normalized coordinate system, where
i denotes the tooth index. Each quadrant Qk, where k ∈ {1, 2, 3, 4}, con-
tains 8 teeth, defined as TQk

= {Gk1, Gk2, . . . , Gk8}. The statistical inter-
tooth Euclidean distances D

(k)
ij within a quadrant are computed as: D

(k)
ij =√

(xi − xj)2 + (yi − yj)2, with Gi, Gj ∈ TQk
. The origin Oxy of the normal-

ized system is set at the midpoint of the maxillary and mandibular central
incisors, whose geometric centers define: O = 1

4 (G11 +G21 +G31 +G41) . Since
Tk,8 is absent from the SSM due to rarity, its geometric center G8 is interpolated
from G6 and G7. Finally, statistical inter-tooth distances Dij for each quadrant
Qk are obtained by averaging male and female dentition models, forming the
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Fig. 2. Quadrants Qk layout with 32-tooth Universal Numbering System [1].

intra-quadrant distance matrix DQk
= [D

(k)
ij ], where Dij encodes pairwise Eu-

clidean distances between teeth within Qk.
Geometry Prior-Assisted Learning. To ensure semantically meaningful pre-
dictions, we adapt a prior-regularized DSC for multi-class segmentation, the Gen-
eralized Wasserstein Dice Loss (GWDL) [10], by replacing its original empirical
dissimilarity penalties with statistical inter-tooth distances as a geometric prior,
yielding the Geometric Wasserstein Dice Loss (GeoWDL). Wasserstein Distance
(WD), derived from Optimal Transport (OT) [10], quantifies the minimal cost
of transforming one probability distribution into another. When enriched with
geometric priors, it enables structured penalization of segmentation errors based
on spatial and morphological relationships. Specifically, higher penalties are as-
signed to errors between distant teeth within the same quadrant, reflecting ge-
ometric prior, while semantically weighted adjustments assign lower penalties
to misclassifications among morphologically similar teeth within the same arch
and higher penalties to confusions between the structurally distinct upper and
lower arches. We introduce penalty modifiers pQki

Qkj
to weight geometry-based

penalties, as matrix Qqij (i, j ∈ k) to penalize confusions between quadrants Qk

(Fig. 2): within dental arch (pQ1Q2 = 0.1), between arches (pQ1Q4 = 0.2) and
diagonally (pQ1Q3 = 0.3), given as:

Qqij =


0 q12 q13 q14
q21 0 q23 q24
q31 q32 0 q34
q41 q42 q43 0

 =


0 0.1 0.3 0.2
0.1 0 0.2 0.3
0.3 0.2 0 0.1
0.2 0.3 0.1 0

 . (1)

To obtain the penalty matrix Mgeo (hereafter M for brevity), we arrange DQk

and apply penalty modifiers Qqij . First, we define the helper matrix Pmn,ij =
qijJmn, where Jmn is an 8× 8 matrix of ones and m,n index index the elements
of J , ensuring that multiplication with qij results in a matrix filled with the
corresponding penalty value. Next, we compute Mk×mn = DQk

+ Pmn. The
resulting M is 33×33, with 32 tooth classes (l) normalized to (0,1). A background
class (b) is added, with b = 2 to strongly penalize tooth-to-background miss-
classification, followed by final normalization for consistency. We integrate the
geometrical and morphological prior of M within the loss function as follows:

LGeoWDL(p̂,p) = 1−
2
∑

l

∑
i pi,l

(
1−WM (p̂i,pi)

)
2
∑

l [
∑

i pi,l (1−WM (p̂i,pi))] +
∑

i W
M (p̂i,pi)

,

(2)
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where WM (p̂i, pi), given as: WM (p̂i,pi) =
∑L

l=1 pi,l
∑L

l′=1 Ml,l′ p̂i,l′ is the WD-
weighted probability mass between predicted p̂i and ground truth (GT) pi at
voxel i. To address third molar class imbalance, the final segmentation loss Lseg
combines LGeoWDL with inverse class frequency weighted cross-entropy LWCE.
Deep Watershed Instance Regression. To generate inputs for the deep wa-
tershed algorithm, our method optimizes two complementary tasks: energy basin
regression and directional gradient estimation for boundary refinement. These
tasks ensure accurate instance separation while encoding tooth boundaries and
instance identity, enabling full tooth spatial understanding. We adapt the 2D
deep watershed approach [2] to 3D tooth instance segmentation, modeling each
tooth as an energy basin with a smooth energy gradient. First, we replace dis-
crete energy-level classification with continuous energy map regression, which
encodes spatial structure by assigning each voxel a distance to the nearest tooth
boundary. This contrasts with the original approach and [9,29], which classify
discrete offsets from the tooth centroid within a multi-task approach. Second,
we refine boundary localization by estimating energy descent directions at each
voxel, crucial for capturing rapid gradient changes in root apices. Unlike sequen-
tial pretraining [2], we train direction estimation as a parallel auxiliary task for
efficiency. These adaptations aim to enable end-to-end optimization, improv-
ing instance awareness and refining segmentation precision, particularly in fine
root structures. We compute watershed energy basins from GT using the Eu-
clidean Distance Transform, which encodes distances to the instance boundary:
LEDT = 1

N

∑X
x=1

∑Y
y=1

∑Z
z=1[I(x, y, z) − Î(x, y, z)]2. For energy direction, let

E(r), where r = (x, y, z), be the energy map defining a scalar field over a 3D
voxel grid. The gradient G(r) at each voxel r is computed by convolving the
scalar field E(r) with the 3D Sobel-Feldman operator Kd along each dimension
d: G(r) =

∑
d∈{x,y,z} Kd ∗ E(r). The gradient magnitude G(r) and the unit di-

rection vector uv for each voxel v are given by G(r) = ∥G(r)∥2 and uv = G(r)
G(r) ,

where ∥ · ∥2 denotes the Euclidean norm. Maximum angular error θv = π oc-
curs when uv misidentifies instance’s center, refining boundary localization. We
optimize the 3-channel decoder’s D output using the mean squared error loss
in the angular domain: Ldir =

∑
v∈Pl

|| cos−1⟨up GT,up pred⟩||2, where Pl and
l ∈ {1, 2, ..., 32} is the set of all voxels belonging to the tooth semantic class. We
mask non-tooth areas to reduce complexity and accelerate convergence. We clip
cos−1 to ⟨−1, 1⟩, for numerical stability.
Deep Watershed Instance Classification via Majority Voting. Since in-
stance segmentation assigns a single, consistent label to each tooth, we first apply
the deep watershed algorithm to separate tooth instances and then classify them
using majority voting based on voxel-wise predictions from the semantic segmen-
tation branch. To this end, we extract instance seeds by empirically thresholding
energy basins at half their depth (β = 0.5). Next, we binarize the multi-class seg-
mentation to create a mask, restricting the watershed algorithm to tooth regions
for improved computational efficiency. We then apply the watershed algorithm
using predicted energy maps, seed points, and the segmentation mask, derived
from an end-to-end optimized model, to separate 3D tooth instances. Finally,
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Table 1. Quantitative results of GEPAR3D and state-of-the-art methods for general and
tooth-specific segmentation. We report Detection Accuracy (DA) and F1 for instance
detection and classification; DSC, RC, and HD for multi-class segmentation; and NSD1

and RCB for binary segmentation, with means and standard deviations (in brackets).
Results are averaged across three external datasets unless stated explicitly. Methods are
sorted by average DSC; best and second-best tooth-specific methods are highlighted in
bold and underlined, respectively. I, S, and IS denote instance, semantic, and instance-
based multi-class segmentation. † indicates p-value < 0.05.

Method Type DA (%)↑ F1 (%)↑ DSC (%)↑ RC (%)↑ HD (mm)↓ NSD1 (%)↑ RCB (%)↑
In-house Cui et al. TF2 Average

U-Net † [25] S 95.6(4.6) 93.5(6.3) 87.8(3.4) 88.7(3.3) 88.3(3.1) 88.2(3.8) 85.5(5.0) 21.78(11.24) 88.2(5.1) 90.6(2.9)
Swin SMT †[23] S 98.1(3.1) 96.8(4.0) 92.8(2.5) 92.9(2.5) 91.4(3.0) 92.3(2.8) 91.1(4.2) 2.93(1.89) 94.6(3.3) 92.9(3.2)
Swin UNETR †[30] S 97.9(3.3) 96.6(4.6) 92.8(2.7) 92.6(2.3) 92.3(2.4) 92.6(2.7) 91.3(3.8) 3.41(2.57) 94.5(3.4) 93.3(2.7)
Swin UNETRv2 †[12] S 98.1(3.3) 97.3(4.0) 92.7(3.2) 93.2(2.5) 93.4(1.8) 93.1(2.7) 91.6(4.3) 2.42(1.19) 95.5(3.4) 93.1(3.2)
ResUNet34 †[11] S 98.4(3.5) 97.5(4.5) 93.5(2.1) 93.4(2.3) 93.0(2.7) 93.3(2.4) 90.6(3.9) 2.19(1.56) 96.0(2.9) 91.8(3.2)
VSmTrans †[20] S 98.9(2.3) 97.7(3.6) 93.2(2.8) 93.5(1.7) 93.8(1.7) 93.5(2.3) 92.1(3.7) 9.06(7.91) 95.5(3.3) 94.1(2.5)
V-Net †[22] S 98.9(2.5) 97.8(3.5) 93.7(1.7) 93.8(2.1) 93.2(2.3) 93.5(2.1) 92.4(3.6) 1.96(0.70) 95.9(2.9) 94.0(2.8)

Jang et al.†[13] I 96.0(6.2) - 83.5(1.6) 82.6(2.0) 82.5(1.3) 83.0(1.8) 75.6(6.1) 3.07(0.76) 79.3(3.0) 76.6(5.1)

MWTNet †[4] I 92.6(8.4) - 87.4(1.4) 84.3(2.0) 89.3(1.1) 87.4(2.5) 73.9(9.2) 2.29(0.59) 85.7(4.3) 76.3(6.2)
TSG-GCN †[21] S 86.9(9.7) 83.0(11.4) 89.3(1.7) 91.0(3.4) 87.8(1.9) 89.2(3.0) 76.8(11.2) 2.47(0.76) 90.1(4.5) 86.3(4.9)

ToothSeg †[9] IS 88.8(10.5) 86.2(7.5) 89.3(1.8) 93.6(0.8) 89.8(1.7) 90.4(2.6) 80.2(11.1) 2.84(1.67) 91.3(5.1) 81.0(8.0)

SGANet †[19] S 92.9(9.6) 90.8(10.4) 92.2(1.6) 92.9(2.5) 91.9(1.8) 92.2(2.1) 83.8(9.4) 2.18(0.74) 94.3(3.2) 85.7(5.9)

GEPAR3D IS 99.2(2.4) 98.0(3.7) 95.5(1.2) 95.1(0.8) 94.3(1.1) 95.0(1.4) 93.9(3.2) 1.44(0.70) 97.6(1.9) 95.2(2.1)

each instance is assigned the class with the most frequent voxel-wise prediction.
For a given instance j, let Ci be the class of voxel i in segmentation S, and Ivj
its volume: Cj = argmaxc

∑
i∈Vj

δ(Ci, c), where δ(Ci, c) is 1 if Ci = c, otherwise
0. The instance is assigned the class with the highest count.

3 Experiments and results

Datasets and preprocessing. We train and validate our method on a publicly
available dataset of 98 CBCT scans [7], reannotated into 32 classes following the
Universal Numbering System [1]. We test on 46 CBCT scans from 4 medical cen-
ters, including two public datasets: Cui et al. [7] and Tooth Fairy 2 (TF2) [3,6]
(file IDs in accompanying JSON), and 2 in-house sets from a retrospective study
(IRB OKW-623/2022) at Polish centers A (11 scans, Carestream CS 9600) and
B (9 scans, i-CAT 17-19). For reliable root evaluation, only scans with fully vis-
ible roots are included. All scans are resampled to 0.4 mm isotropic resolution,
with Hounsfield Unit intensities clipped to [0, 5000] and normalized to [0, 1].
Implementation details. For training, we randomly crop 1283 patches around
GT-based ROIs. The model trains for 1000 epochs with AdamW, batch size
of 2, and a cosine annealing scheduler. The loss function is defined as L =
Λ1LEDT + Λ2Lseg + Λ3Ldir, with empirically set weights Λ1 = 10, Λ2 = 0.1,
Λ3 = 1e−6 for balance. The initial learning rate and weight decay are set to 1e−3

and 1e−4, respectively. During inference, a lightweight 3D U-Net (2563 patch)
performs coarse binary segmentation to extract the ROI. Then we use sliding
window inference (0.6 overlap, Gaussian weighting). The pipeline is implemented
in PyTorch 1.13.1/MONAI 1.3.0 and runs on a single NVIDIA A100 GPU.
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Fig. 3. Qualitative comparison of GEPAR3D with the two best-performing methods from
quantitative results. Surface Hausdorff Distance heatmaps overlaid on GT labels (green
= low, purple = high) highlight apex deviations. GEPAR3D shows superior root sensi-
tivity versus tooth-specific baselines. Missing teeth are shown in gray.

Evaluation details. We evaluate on multi-class and binary metrics. Multi-
class performance uses DSC, Precision (PR), Recall (RC), and Hausdorff Dis-
tance (HD). Binary evaluation uses Normalized Surface Dice within a 1-voxel
GT boundary (NSD1) [27] and Binary Recall (RCB). While multi-class met-
rics assess overall performance, binary metrics focus on tooth tissue segmenta-
tion completeness, with RCB highlighting false negatives and NSD1 measuring
boundary accuracy, including roots. Instance detection is evaluated via Detection
Accuracy (DA) at a 50% Intersection over Union (IoU) threshold, with instances
having IoU > 0.5 considered detected. Classification performance is measured
using the F1 score. We benchmark GEPAR3D against general segmentation and
tooth-specific state-of-the-art methods. General models follow GEPAR3D’s train-
ing setup (32-class labels, sliding window inference) and tooth-specific methods
follow original protocols, with preprocessing and augmentations matched where
possible. Statistical significance is determined via a paired t-test (p < 0.05).
Comparison with state-of-the-art methods. As shown in Table 1, GEPAR3D
surpasses all competing methods in segmentation and instance detection. It
achieves a DA of 99.2±2.4% (+3.2% over Jang et al.) and an F1 score of
98.0±3.7% (+7.2% over SGANet), confirming its superior ability to identify and
classify tooth instances. This strong detection performance ensures segmenta-
tion metrics remain representative, even in challenging cases. GEPAR3D achieves
the highest DSC on all external test sets, averaging 95.0±1.4% (+2.8% over
SGANet), alongside the best RC (93.9±3.2%) and lowest HD (1.44±0.50 mm),
demonstrating robust generalization. NSD1 of 97.6±1.9% (+3.3% over SGANet)
and RCB of 95.2±2.1% (+9.5% over TSG-GCN), highlight superior tooth tis-
sue completeness. Qualitative results (Fig. 3) further validate this, revealing that
competing methods often miss substantial root fragments, as shown by per-voxel
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Table 2. Ablation study on network and loss components. The best-performing method
is highlighted in bold, and the second-best is underlined. DA indicates detection accu-
racy, PR precision, RC recall and NSD normalized surface dice within 1 voxel boundary.
G denotes Geometric Prior loss, E Energy map and D Direction map. U0,1 denotes
uniform distribution of random cost matrix. † indicates p-value < 0.05.

# G E D DSC (%)↑ PR (%)↑ RC (%)↑ NSD1 (%)↑ DA(%) ↑ F1 (%)↑

1† - - - 93.27(2.40) 94.59(3.73) 90.62(3.85) 95.95(2.94) 98.4(3.5) 97.5(4.5)
2† (U0,1) - - 93.49(2.35) 90.78(5.31) 92.76(3.53) 95.96(2.83) 99.2(2.0) 98.2(3.3)
3† - - 94.55(1.49) 91.67(5.39) 92.86(2.35) 96.05(1.94) 99.3(1.9) 98.4(3.2)

4† - - 94.58(1.28) 95.55(2.94) 91.36(3.67) 97.25(1.93) 99.2(2.2) 98.0(3.5)
5† - 94.68(1.13) 95.52(2.86) 91.65(3.81) 97.41(1.83) 99.2(2.4) 98.0(3.5)
6† - 94.96(1.13) 94.33(3.24) 93.12(3.33) 97.58(1.90) 99.1(2.5) 97.9(3.6)
7 95.01(1.36) 94.95(3.45) 93.90(3.18) 97.63(1.94) 99.2(2.4) 98.0(3.7)

HD heatmaps, whereas GEPAR3D preserves more complete tooth anatomy.
Ablation Study. We evaluate the impact of various loss functions and net-
work components in GEPAR3D (Table 2). As a baseline (#1), we use Dice+WCE
loss. In (#2), we use the original GWDL with a penalty matrix randomly gen-
erated from a uniform distribution to test the loss function’s robustness to an
uninformative prior (UP). Driven purely by error minimization via OT, shifts the
PR–RC balance toward higher sensitivity, resulting in an RC increase of +2.14%
while PR decreases by -3.81%. Despite the UP, DSC improves (+0.22%), con-
firming that loss regularization is not rigid and still enables the model to learn
useful representations. Introducing the proposed geometric prior GeoWDL (G)
in (#3) enhances DSC (+1.06%), improves NSD (+0.09%), and achieves the
highest DA of 99.3%, demonstrating that structured guidance better aligns with
tooth classification, though lowered PR remains. Adding energy map regression
(E) in (#4) via the deep watershed method improves DSC (+1.31%) and boosts
PR (+0.96%), thereby enhancing focus on tooth instances. In (#5) we incor-
porate an auxiliary energy descent direction task (D), yielding further gains in
DSC (+0.10%), RC (+0.29%), and NSD (+0.16%), suggesting refined boundary
localization. The introduction of GeoWDL in (#6) increases DSC (+0.28%) and
noticeably improves RC (+1.47%). Finally, the proposed solution (#7), which
jointly optimizes E and D under G guidance, not only raises PR (+0.36%) but,
more importantly, significantly boosts RC (+3.28%) over (#1) and achieves the
highest NSD of 97.63%. Overall, these results demonstrate that proposed com-
ponents complement each other, enhancing sensitivity in challenging regions.

4 Conclusions

We present GEPAR3D, which combines geometric prior-assisted learning with deep
watershed instance detection to improve tooth segmentation, particularly for fine
root structures. Extensive experiments demonstrate its superiority over state-
of-the-art methods, with enhanced segmentation supporting better orthodontic
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planning and root resorption assessment. We ensure reproducibility by validat-
ing on public datasets, sharing code and implementation details. However, our
study has limitations. Training was restricted to adult teeth, which may limit
applicability to younger patients. Additionally, while geometric prior loss is cru-
cial for encoding anatomical constraints, it can be overly sensitive when used
alone, requiring careful tuning. In GEPAR3D, its integration with instance regres-
sion balances sensitivity and precision, mitigating this issue. While our method
significantly improves root segmentation, further gains could be achieved with
larger datasets and self-supervised training. Finally, resorption analysis requires
comparing sequential scans to a reliable baseline segmentation. As no public
CBCT datasets include resorbed annotations, we focused on validating apex
segmentation accuracy, since under-segmentation would mask subsequent root
shortening. To conclude, this work underscores the importance of root segmen-
tation and aims to inspire future research.
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