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Abstract. Medical image annotation is constrained by privacy concerns
and labor-intensive labeling, significantly limiting the performance and
generalization of segmentation models. While mask-controllable diffu-
sion models excel in synthesis, they struggle with precise lesion-mask
alignment. We propose Adaptively Distilled ControlNet, a task-
agnostic framework that accelerates training and optimization through
dual-model distillation. Specifically, during training, a teacher model,
conditioned on mask-image pairs, regularizes a mask-only student model
via predicted noise alignment in parameter space, further enhanced by
adaptive regularization based on lesion-background ratios. During sam-
pling, only the student model is used, enabling privacy-preserving medi-
cal image generation. Comprehensive evaluations on two distinct medical
datasets demonstrate state-of-the-art performance: TransUNet improves
mDice/mloU by 2.4%/4.2% on KiTS19, while SANet achieves 2.6%/3.5%
gains on Polyps, highlighting its effectiveness and superiority. Code is
available at https://github.com/Qiukunpeng/ADC.

Keywords: Diffusion models - Medical Image Synthesis - Medical Image
Segmentation.

1 Introduction

In medical image analysis, large, accurately annotated datasets are essential
for high-performance segmentation [34,20]. Despite the rapid progress in deep
learning [33,4,13,2], the high cost of acquiring annotated medical images, cou-
pled with privacy and copyright constraints [23,6], hinders the full potential of
segmentation models.

To mitigate data scarcity issue, diffusion models [28,10,21] have emerged as
a leading paradigm for synthetic data generation, offering both training stability
and high-fidelity image synthesis. Several existing approaches leverage lesion-
free images [16,24] to synthesize abnormal samples; however, these methods
fail to fully address privacy concerns. In contrast, mask-controllable synthe-
sis eliminates the need for costly manual annotations and ethical constraints
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while providing a more accessible and streamlined framework, making it a com-
pelling alternative for broader adoption [6,23,5]. Regardless of the approach,
precise lesion-mask alignment remains a notorious challenge in existing methods
[19,35,15,6]. In this work, we advance the mask-controllable synthesis paradigm
to generate high-quality synthetic medical images, specifically tackling lesion
alignment limitations to enhance downstream segmentation performance.

To address this, studies [15,6] have embedded pretrained segmentation mod-
els within diffusion frameworks to provide iterative feedback, refining noise pre-
diction. However, their reliance on pretrained segmentation models renders these
methods task-specific and may introduce inherent biases into synthetic data. In
a related effort, [6] introduces adaptive weighting to enhance lesion representa-
tion, yet the disproportionately low weight assigned to lesion-free regions impairs
learning, leading to degraded image fidelity even after extensive training.

To overcome these limitations, we propose the Adaptively Distilled Con-
trolNet, a novel field distillation framework [9,18,27]. Our approach leverages
the regularization property of controllable diffusion models [3,11], where condi-
tional inputs act as implicit regularizers to ensure stable optimization and en-
hanced image quality. Specifically, we adopt a teacher-student paradigm, where
the teacher model—conditioned on mask-image pairs—regularizes the noise pre-
diction of the student model, which is conditioned only on masks. A shared
forward noise addition process enables a dual-diffusion decoder architecture. Fur-
thermore, an adaptive weight distillation strategy reinforces lesion representation
while preserving distributional fidelity. During sampling, the student model runs
at ControlNet [35] speed while ensuring diversity and scalability without extra
image conditions.

Our contributions are summarized as follows: (1) We introduce Adaptively
Distilled ControlNet, which significantly accelerates training convergence and
data fitting. Moreover, its task-agnostic nature allows seamless adaptation to di-
verse datasets and modalities without requiring modifications to the model archi-
tecture. (2) We propose Adaptive Distillation Loss, which substantially enhances
lesion-mask alignment in synthetic images, generating high-quality training data
for segmentation models. This ensures superior performance and generalization
in downstream segmentation tasks. (3) Extensive experiments demonstrate that
our method surpasses existing approaches in both image fidelity and segmen-
tation accuracy. Specifically, TransUNet achieves 2.4% mDice and 4.2% mloU
improvements on the KiTS19 dataset, while SANet attains 2.6% mDice and 3.5%
mloU gains on Polyps, underscoring the efficacy of our approach.

2 Preliminary

Diffusion models [10,28] formalize data generation through two coupled chains:
a destructive forward process that gradually corrupts data with Gaussian noise,
and a learned reverse process that iteratively recovers the original signal. Fol-
lowing the standard variance-preserving formulation [10], the denoising network
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Fig. 1. (a) Illustration of our method during the training phase. (b) During sampling,
only the student model is utilized with arbitrary masks.

€ (x4, t) directly predicts the noise, reducing the training objective to:

Csimple = Ext,t,e [Hﬁg(wt,t) - 6”%] ) (1)

where t ~ U{1,T} and z; is the noisy image.

Stable Diffusion [21] refines this framework through latent space optimiza-
tion. A pretrained VAE [31] encoder £ maps images xo into compact latent
representations zp = £(x¢), facilitating diffusion in a reduced-dimensional space.
Various extensions [19,35,15] of this model enable conditional generation via text
prompts c; and task-specific control signals cy, allowing for more precise content
modulation. The generalized training objective is expressed as:

Leond = Ezf,,t,cf,,%E [||69(Zt,t, Ct, Cf) - 6”%] . (2)

3 Methodology

3.1 Architecture of Adaptively Distilled ControlNet

Building upon the established ControlNet framework [35], we propose a distilled
dual-branch diffusion architecture with shared latent projection, as illustrated in
Fig. 1(a). The frozen VAE [31] encoder £ establishes a deterministic mapping & :
o — 2o through latent space embedding, where xg denotes the input image and
2z its latent representation. The student branch (S) ingests conditional masks
through a dedicated ControlNet (S) module, generating encoded mask features
¢m that integrate with the student diffusion U-Net Decoder (S) through feature
injection for noise prediction €3 .

The teacher branch (T) processes the paired image through a parallel Con-
trolNet (T) to extract encoded image features ¢;. These image features are fused
with the corresponding mask features c,, through element-wise summation:

Cmix = C; + Cmy- (3)
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Fig. 2. Visualizing the difference between ControlNet and our method in training con-
vergence and data fitting.

Table 1. Comparison of synthetic medical image quality generated by each method.

Metrics Polyps ‘ KiTS19

SinGAN ArSDM T2I-Adapter ControlNet Ours ‘TZI—Adapter ControlNet Ours

FID () 103.142 98.085  150.546 65.609 66.587| 92.717 69.240 70.786
CLIP-I (1) 0.851 0.845 0.874 0.884  0.901 0.814 0.833  0.839

This fused representation cnix propagates through the teacher’s diffusion U-Net
decoder (T) to predict the noise €%,. By sharing the forward process between the
student and teacher branches, the architecture employs a unified latent space
projection and diffusion U-Net encoder, significantly optimizing memory effi-
ciency. The composite objective function integrates the following components:

L= Ls+ Lr + Lada ; (4)
—_——— ——

Denoising Objectives  Distillation Regularizer

with Denoising Objectives defined as:

Ls= Ezt7t70t,cm7€ [Hea(zht’ Ct, Cm) - 6”%] )

ACT = Ezt,ct,cmm,t,e [HEO’ (Zt, t7 Ct, Cmix) - 6”%] 5

()

where 6 and ', as in ControlNet [35], are both initialized with the parameters of
a pretrained diffusion model, denote mutually independent parameters for each
branch, and are optimized separately during training. Meanwhile, ¢ ~ N(0, I)
ensures stochastic consistency.

During sampling, as shown in Fig. 1(b), medical images are generated using
the student branch with arbitrary masks at the same speed as ControlNet [35].

3.2 Adaptive Distillation Loss

The spatial alignment between synthesized lesion regions and their correspond-
ing masks is critical for downstream segmentation tasks. However, the severe
lesion-background imbalance in medical image synthesis often leads to the un-
derrepresentation of lesion regions. To address this issue, we propose a spatially
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Fig. 3. Examples of real and synthetic kidney tumor images generated by each method.

Table 2. Comparisons of different methods applied on tumor segmentation baselines.

Methods TransUNet ‘ nnUNet

mDice mIoU Accuracy Recall‘mDice mloU Accuracy Recall

Real Dataset 92.8 86.9 98.6 91.5 | 96.5 934 99.3 96.4
+Copy-Paste 93.3 87.7 98.7 91.5 | 96.5 93.6  99.3 96.0
+T2I-Adapter 94.5 89.9 99.0 926 | 96.3 93.6 99.8 95.8
+ControlNet 94.6 90.0 99.0 93.9|96.1 932 99.8 95.8
+Ours 95.2 91.1 99.0 938 |97.9 96.0 99.6 97.8

adaptive distillation mechanism that enables the teacher model to dynamically
modulate the regularization intensity for the student model, thereby emphasizing
the learning of lesion-specific morphological features in the student model.

Unlike previous approaches that apply reweighting techniques to denoising
losses [6], our method introduces lesion-aware attention through dual-stream gra-
dient modulation, effectively addressing the lesion-background imbalance. The
adaptive weight wagq, is derived from the mask statistics, with distinct weights
assigned to lesion and lesion-free regions:

%, for lesion regions
wAda — total

%w , otherwise
total

(6)

where Niesion and Niesion-free denote pixel counts for respective regions, and
Niotal = H x W represents the total number of pixels in the image. These
weights are normalized to form a spatially adaptive W x H weight matrix. The
final adaptive distillation loss is formulated as:

Lada =E., ¢ [wada - €5 — sg(eg)ll3] . (7)
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(a) Original

Fig. 4. Examples of real and synthetic polyp images generated by each method.

where sg(+) indicates stop-gradient operation.

4 Experiment

4.1 Dataset and Evaluation Metrics

We evaluate our method on two publicly available medical datasets: Polyps [14,1]
(RGB) and KiTS19 [7] (CT, 2D slices), referred to as Real Datasets.

Generative Model Training: For Polyps, we use images from Kvasir [14]
and CVC-ClinicDB [1]. For KiTS19 [7], 50 cases are randomly selected from 210
labeled cases, sliced into 2D, filtering out lesion-free slices.

Generative Model Sampling and Evaluation: Following [6], synthetic
images are generated using masks from Real Datasets, referred to as Syn-
thetic Datasets, and evaluated using FID [8] and CLIP-I [22].

Segmentation Model Training: Synthetic Datasets are combined with
the Real Datasets as a new training set to train segmentation models.

Segmentation Model Testing and Evaluation: The Polyps test set in-
cludes images from five public datasets: EndoScene [32], CVC-ClinicDB [1],
Kvasir [14], CVC-ColonDB [29], and ETIS [25]. For KiTS19 [7], 10 non-overlapping
cases are selected from 210 labeled cases, sliced into 2D, filtering out slices with-
out lesions. Evaluation metrics include mDice and mlIoU for Polyps, and mDice,
mloU, Accuracy, and Recall for KiTS19.

4.2 Implementation Details

We detail the configuration of the generative and segmentation models as follows:

Generative Model: We use the pre-trained Stable Diffusion v1.5 [21]. The
training setup is the same for both datasets: the AdamW [17] optimizer with a
learning rate of 10™° and weight decay of 1072 is used for 3,000 iterations on
8xNVIDIA 4090 GPUs (global batch size of 32) with 384% resolution inputs.
A 5% probability for prompt dropout is applied. Sampling employs classifier-
free guidance [11] (CFG=9) and deterministic DDIM [26] sampling (n = 0, 50
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Table 3. Comparisons of different methods applied on polyp segmentation baselines.

Methods EndoScene ClinicDB Kvasir ColonDB ETIS ‘

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU‘mDice mloU

Overall

nnUNet 84.3 76.0 89.7 85.0 89.7 84.3 772 69.2 69.1 61.5| 783 70.9
+Copy-Paste 85.0 76.8 89.5 85.0 89.8 84.3 77.7 70.2 694 61.8| 78.7 715
+SinGAN 86.5 79.4 88.8 84.0 90.2 85.4 717 65.7 66.7 60.5| 75.2 69.3
+ArSDM 86.2 79.1 89.3 84.5 90.2 84.8 753 68.0 732 657|786 717
+T2I-Adapter 83.9 76.6 87.9 829 91.1 855 755 689 69.2 61.7| 78.0 70.9
+ControlNet 84.2 76.5 88.6 83.8 89.9 845 73.6 66.0 66.6 59.1| 75.9 68.8
+Ours 87.7 79.8 88.9 84.0 91.3 85.9 76.2 68.8 74.3 67.8| 79.5 72.7

SANet 88.8 81.5 91.6 859 904 84.7 753 67.0 750 654|794 714
+Copy-Paste 89.7 83.0 90.2 85.1 90.3 848 77.7 70.0 774 688|811 73.7
+SinGAN 88.3 81.6 909 853 91.0 85.8 773 694 T3.7 654|800 72.6
+ArSDM 90.2 83.2 914 86.1 91.1 856 77.7 70.0 780 69.5| 815 74.1
+T2I-Adapter 89.1 819 91.2 855 904 845 77.6 70.2 764 67.2]| 81.1 73.3
+ControlNet 89.3 82.1 91.1 85.8 90.8 852 76.2 68.2 757 658 80.0 72.2
+Ours 89.2 83.1 92.9 87.4 91.2 8.6 77.8 70.4 79.6 71.8|82.0 74.9

Polyp-PVT 90.0 83.3 93.7 839 91.7 86.4 80.8 727 787 70.6| 833 76.0
+Copy-Paste 88.0 80.9 934 88.7 91.7 871 798 71.8 79.2 71.3| 82.8 75.6
+SinGAN 87.0 79.7 91.7 87.0 92.8 88.1 76.9 69.0 T4.2 66.7| 80.1 73.0
+ArSDM 88.2 81.2 922 875 91.5 86.3 81.7 73.8 80.6 72.9| 84.0 76.7
+T2I-Adapter 89.2 824 94.0 89.2 904 850 79.6 71.7 781 69.8| 824 751
+ControlNet 86.1 788 91.3 859 91.1 86.2 79.7 714 787 70.2| 82.3 74.6
+Ours 90.3 83.8 93.0 885 92.0 872 82.0 74.1 80.8 73.1|84.4 77.3

steps), as described in [35]. T2I-Adapter [19] and ControlNet [35] share the same
configuration as our method, while SInGAN [30] and ArSDM [6] use their default
settings. Notably, for ControlNet [35], unlocking the weights of Stable Diffusion
is more effective for medical image synthesis.

Segmentation Model: Both CNN-based and Transformer-based models
are utilized with default configurations. Specifically, nnUNet [13] is trained for
200 epochs with five-fold cross-validation, and the final results are obtained by
ensembling five models, followed by postprocessing.

4.3 Qualitative Comparison

Fig. 2 demonstrates that the teacher model’s adaptive regularization accelerates
the student model’s data fitting within approximately 300 steps, mitigating the
sudden convergence phenomenon in ControlNet [35].

Fig. 3 and Fig. 4 present kidney tumor and polyp images generated by various
methods. SinGAN [30], although designed for the Polyps dataset, often intro-
duces artifacts and lacks diversity. ArSDM |[6] suffers from texture degradation
in polyps and fails to generalize to KiTS19 due to its task-specific nature. T2I-
Adapter [19] generates unrealistic textures in RGB data and underperforms on
CT data. ControlNet [35] struggles with mask-lesion alignment. In contrast, our
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Table 4. Comparison of the impact of Lad. on kidney tumor image segmentation.

. TransUNet ‘ nnUNet
Settings
mDice mIoU Accuracy Recall‘mDice mloU Accuracy Recall
w/o 94.6 90.0 99.0 93.9|96.1 93.2 99.8 958

w/(Standard) 94.9 90.6 99.0 935|974 953 99.6 97.6
w/(Adaptive) 95.2 91.1 99.0 93.8 |97.9 96.0 99.6 97.8

model excels in both mask-lesion alignment and morphological features, clearly
outperforming the others.

4.4 Quantitative Comparisons

Table 1 shows FID [8] and CLIP-I [22] results. Notably, more precise mask-
lesion alignment does not significantly lower the FID score, with our method’s
FID score slightly higher than ControlNet [35]. We attribute this to the inherent
limitations of FID [12], which overfits with limited data. Nevertheless, CLIP-I
[22] confirms our method achieves higher semantic similarity.

Table 2 and Table 3 highlight the enhancement of segmentation models using
synthetic data from various generative models. We establish a new baseline by
retraining models on a duplicated dataset (i.e., “Copy-Paste”). Our method sig-
nificantly outperforms others. On KiTS19 [7], it improves mDice by 2.4%, mIoU
by 4.2%, and Recall by 2.3% over TransUNet [2], and mDice by 1.4%, mIoU by
2.6%, and Recall by 1.4% over nnUNet [13]. On Polyps, our method outperforms
nnUNet [13] by 1.2% in mDice and 1.8% in mIoU, SANet [33] by 2.6% in mDice
and 3.5% in mlIoU, and Polyp-PVT [4] by 1.1% in mDice and 1.3% in mlIoU.
Interestingly, in comparison to ArSDM [6] and ControlNet [35], we observe that
there is no consistency between image quality and segmentation performance,
indirectly highlighting that our method’s superior mask-lesion alignment is key
to improvements across diverse segmentation models.

5 Ablation Study

We conducted an ablation study to evaluate the importance of the Adaptive Dis-
tillation Loss (L£ada). Table 4 presents the results on KiTS19 [7]. The findings
show that regularizing the student model with Distillation Loss (Standard) im-
proves segmentation performance, while £a4. (Adaptive) further enhances the
baseline model’s accuracy, highlighting its crucial role in mask-lesion alignment.

6 Conclusion

We present Adaptively Distilled ControlNet, a novel image synthesis method.
During training, a teacher model with image-conditioned inputs adaptively reg-
ularizes the student model. During sampling, only the enhanced student model
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is used, maintaining ControlNet’s [35] sampling speed. We generate high-quality
medical images with accurate mask-lesion alignment and rich morphological fea-
tures using arbitrary masks. Extensive experiments across two modalities demon-
strate the robustness, effectiveness, and superiority of our approach.
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