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Abstract. With the rise of wearable IoT devices such as smartwatches
and smart rings, ECG signals have become more accessible and made
cardiovascular monitoring a reality. However, analyzing the ECG signals
for complex conditions, such as bundle branch blocks and myocardial in-
farction, requires multi-lead ECG data. Although various deep learning
models for ECG reconstruction have been proposed, they are computa-
tionally expensive and unsuitable on resource-constrained wearable IoT
devices. To address this challenge, we propose mEcgNet, a parameter-
efficient model for reconstructing 12-lead ECG signals from a single lead.
mEcgNet introduces a modular deep learning architecture for parame-
ter efficiency and separates the single lead-I signal into multiple fre-
quency segments to improve accuracy. Our experiments demonstrate that
mEcgNet significantly reduces the number of parameters and inference
time by ~23.1x and ~5.4X%, respectively, compared to existing state-
of-the-art models. Furthermore, it reduces the reconstruction error by
~22.1%, demonstrating its high accuracy and efficiency.

Keywords: ECG reconstruction - mEcgNet - Frequency-based segment
partitioning - Parameter-efficient model - Wearable IoT device

1 Introduction

The growing use of wearable IoT devices, such as smartwatches and smart rings,
enables the personalized monitoring of digital health data [4]. In particular, these
devices typically have two electrodes to measure voltage; as a result, they can
record a lead-I ECG signal that is the voltage difference between two distinct
points on the body (e.g., between two fingers). It has been reported that this
lead-I signal enables the early detection of cardiovascular diseases (e.g., atrial
flutter and atrial fibrillation) [14, 30].

While such symptoms can be detected by analyzing lead-I data, more complex
conditions and diseases require a full set of ECG signals which consist of several
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key waveforms, such as P-wave, QRS complex, and T-wave, and each represents
a different cardiac cycle phase [7]. For example, diseases like bundle branch
blocks and myocardial infarction are diagnosed by QRS complex abnormalities
and T-wave changes [6, 23], which are not observable with a single lead-I signal;
they can only be accurately detected and localized using a 12-lead ECG [25, 16].
However, wearable IoT devices can only measure the lead-I signal, and there are
a couple of studies that attempt to reconstruct 12-lead ECG signals from lead-I
inputs using deep learning models. For example, EKGAN [8] used a generative
adversarial network (GAN) with two generators—a 5-layer U-Net and a 5-layer
autoencoder—while ECGrecover [13] used a 5-layer U-Net.

However, these studies face a major challenge: they rely on large-scale deep
learning models that demand significant computational resources. In contrast,
wearable IoT devices typically operate under limited power, memory, and com-
putational constraints [19], making it impractical to deploy such models on these
devices. One possible solution is to run the model in the cloud [18]. In this ap-
proach, ECG signals are transmitted from the devices to remote servers, where
they are then reconstructed. However, this approach raises significant privacy
concerns because ECG data itself is highly sensitive personal information and
could potentially be used to identify individuals |20, 2].

To address the challenge, we propose mEcgNet, an efficient and accurate
ECG reconstruction model. Instead of relying on a single large-scale deep learn-
ing model, mEcgNet decomposes the reconstruction process into multiple stages,
each handled by a small and modular model. Our goal is to perform local recon-
struction on the device without compromising accuracy. Specifically, it partitions
ECG signals into distinct frequency segments with each segment processed by
a dedicated model, termed EcgModule. This modular approach uses far fewer
parameters than a single large model, while the frequency segments preserve
the accuracy by capturing key ECG characteristics. We evaluate mEcgNet on
two public datasets, PTB-XL [29] and Chapman-Shaoxing [31], and demonstrate
that mEcgNet reduces the number of parameters and computational complex-
ity (GFLOPs) by ~23.1x and ~5.5%, respectively, compared to state-of-the-art
(SOTA) models, EKGAN and ECGrecover. Also, our results show that the in-
ference on wearable IoT devices becomes ~5.4x faster. Furthermore, mEcgNet
achieves ~22.1% lower MSE in ECG reconstruction.

2 mEcgNet Architecture

Figure 1 illustrates the architecture of mEcgNet, which consists of two parts:
1) frequency-based segment partitioning that takes the lead-I signal as input
and divides it into multiple frequency segments, and 2) EcgModules, modular
deep learning models that sequentially process the partitioned segments and
accumulate intermediate results to reconstruct the 12-lead ECG signals. The
details are explained in the following subsections.
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Fig. 1: mEcgNet architecture. The given lead-I ECG is first partitioned into three
segments, and EcgModules reconstruct the 12-lead ECG from these segments.

2.1 Frequency-based Segment Partitioning

For parameter-efficient ECG reconstruction, we leverage the intrinsic character-
istics of ECG signals. ECG signals that record the heart’s electrical activity con-
tain a wide range of frequency segments [26]. Specifically, low-frequency segments
capture long-term physiological changes (e.g., circadian rhythms and respiration
cycles) and the slow morphological features of heartbeats (e.g., P and T waves).
High-frequency characteristics show the rapid transitions of the major heart-
beat spikes (e.g., QRS complex). Thus, by analyzing the frequency segments of
the lead-I signal, we can directly extract the critical diagnostic information for
clinical decision-making [17].

However, existing techniques typically process ECG signals using a single
large model without explicitly accounting for their distinct frequency charac-
teristics [8,13]. Instead, we propose partitioning the original ECG signal into
multiple frequency segments in order to capture physiological changes and key
ECG features specified by individual frequency segments. Specifically, a lead-I
ECG signal is recorded as voltage over time, which represents the waveform of
the heartbeat in sequence. mEcgNet converts this signal into a frequency-based
representation (amplitude per frequency) using fast Fourier transform (FFT).

We partition the converted ECG signal into three segments: 1) the lowest-
frequency segment, 2) the medium-frequency segment, and 3) the highest-freque-
ncy segment. We test different numbers of segments and find that using three
segments provides the best accuracy for ECG reconstruction (details in §3.4).
This choice also aligns with the physiological characteristics of ECG signals,
where key waveforms are distributed across three distinct frequency segments:
P/T waves lie in 0.5-10Hz, QRS complex in 8-40Hz, and anomalies above 40Hz
[5]. After partitioning, each segment is converted back into the time domain
using the inverse fast Fourier transform (IFFT), which restores the data back to
heart electrical activity over time as lead-I ECG signals. This inverse transform
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ensures that the input format for mEcgNet matches the format it is designed to
reconstruct as its final output.

2.2 EcgModule

We design the EcgModule, a model for ECG reconstruction aimed at improving
both efficiency and accuracy. As shown in Figure 1, we use three EcgModules
that process the segments sequentially. The first EcgModule processes the lowest-
frequency segment and then passes its output to the next EcgModule. Afterward,
the second EcgModule takes 1) the medium-frequency segment and 2) the output
from the first EcgModule as input. The third EcgModule performs a similar
process, taking the highest-frequency segment along with the output from the
second EcgModule, and finally produces the complete 12-lead ECG signals.

The EcgModule is built upon the U-Net architecture [22] because we find that
it achieves higher accuracy than other architectures (§3.4). U-Net consists of two
parts: an encoder and a decoder. The encoder extracts hierarchical features by
downsampling the input, and the decoder upsamples the encoded representa-
tions, which reconstructs the 12-lead ECG signals in our model. We design both
the encoder and decoder using multiple convolutional blocks. Since the final out-
put of the model consists of 12 separate ECG signals, both the input and output
shapes are two-dimensional (2D) representations of 12 x 512, where 12 denotes
12 different ECG signals and 512 represents the length of each signal. We design
input and output shapes identical to ensure the consistency for ECG reconstruc-
tion. Note that the value 512, which represents the length of each signal, is con-
sistent with previous work [8, 13]; however, we set the signal dimension to 12 by
removing redundant zero padding, thereby improving the parameter efficiency.
Specifically, for the first EcgModule, we start with the lowest-frequency segment
representing 1 x 512 and replicate it 12 times to form a 2D representation as
input of 12 x 512.

To make mEcgNet scalable, we design two types of EcgModule: EcgModule-

L (large module) and EcgModule-S (small module). As Figure 1, EcgModule-S
processes the lowest- and medium-frequency segments while EcgModule-L the
highest-frequency segment. We observe that this design is critical to achieving
the best efficiency and accuracy together (§3.4). The details of the two types in
Figure 2 are explained below.
EcgModule-L: We design EcgModule-L based on the U-Net architecture. Each
convolutional block consists of convolution (Conv2D) layer, batch normaliza-
tion (BatchNorm), and ReLU activation (RELU), except in the decoder’s final
convolutional block where we omit BatchNorm and RELU. This design makes
EcgModule-L more compact than U-Net, as EcgModule-L is to handle only the
highest-frequency segment, and the number of parameters of EcgModule-L is
reduced by 89.6% in comparison with U-Net.

We determine hyperparameters by grid search. Through the grid search, the
number of convolutional blocks in each encoder and decoder is set to three.
We determine the convolutional block in the encoder to downsample the height
and width of the 2D representation by two. Also, the convolutional block in the
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Fig. 2: Structures of EcgModule-L. and EcgModule-S.

decoder upsamples the 2D representation by two. The number of channels of the
Conv2D layer in the encoder is 64, 128, and 256, while in the decoder, they are
256, 128, and 64. We set each Conv2D layer to have a stride of (2,2), a kernel
size of (2,4), and a padding of (0,1), except for the first convolutional block in
the decoder, which uses a kernel size of (3,2) and a padding of (0,0).
EcgModule-S: We design EcgModule-S similar to EcgModule-L but with one
key difference: the last convolutional block of the encoder and the first convo-
lutional block of the decoder are replaced with MLP blocks. This design is to
further reduce the number of parameters over EcgModule-L.

The MLP blocks of both the encoder and decoder consist of grouped Conv2D
(GConv2D), linear layer, BatchNorm, GELU activation (GELU), and dropout.
GConv2D reduces the number of parameters and computational complexity by
processing the input channels in groups rather than individually; however, this
group-wise processing can limit the integration of features across channel groups
[10]. We find that the linear layer can compensate for this limitation by facilitat-
ing feature integration across channel groups. As shown in Figure 2, the encoder
starts with the linear layer followed by GConv2D, while the decoder begins with
GConv2D followed by the linear layer. The encoder’s MLP block uses GConv2D
with a kernel size of (1,4), a stride of (1,4), and a group size of 64, while the
decoder’s MLP block uses GConv2D with a kernel size of (1,1), a stride of (1,1),
and a group size of 4, both with a padding of (0,1).

Compared to conventional U-Net, EcgModule-S with our MLP blocks re-
duces the total number of parameters by 96.3%. Notably, when applied to the
lowest- and medium-frequency segments, our evaluation results show that this
modification does not degrade accuracy (§3.4).

3 Experiments

3.1 Setup

Datasets: To train and evaluate mEcgNet, we use the PTB-XL dataset and
the Chapman-Shaoxing dataset. PTB-XL consists of 21,837 records of 10 s 12-
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lead ECGs sampled at 500 Hz. Also, Chapman-Shaoxing dataset contains 10,646
records of 10 s ECGs sampled at 500 Hz. As these datasets originate from clinical
measurements, they contain noise [1]. So we perform dataset preprocessing, fol-
lowing similar methods from other studies [8, 13|. Specifically, we apply min-max
scaling to normalize each signal to the range of [-1,1], and we use a band-pass
filter with lower and upper cutoff frequencies of [0.05, 150] Hz. We then down-
sample each signal to 512. This preprocessing is to preserve the ECG features
while only removing high-frequency noise and baseline wandering [15, 11].
Implementation and Evaluation Details: We compare mEcgNet with two
SOTA techniques: EKGAN and ECGrecover. For fair comparisons, all models
are trained using the same method described in [8]. Each model is trained for 10
epochs with an initial learning rate of 1 x 10~ for the first 5 epochs, followed by
a weight decay of 0.95 applied at each subsequent epoch. We use a batch size of
512 for model training. All results are averaged across a 5-fold cross-validation
to ensure robustness.

Machines: For training, we use a machine equipped with an NVIDIA A30 GPU.
The inference is conducted on a Jetson Orin Nano using only a CPU. All metrics
are measured on the Jetson Orin Nano, except for the training time.

3.2 Model Performance

We evaluate the model performance across three aspects: 1) model efficiency,
2) training and inference time, and 3) accuracy. For model efficiency, we report
the number of parameters and computational complexity measured in floating
point operations (GFLOPs). For time, we measure the average duration for 1)
training until convergence and 2) inference (12-lead reconstruction) for a single
ECG instance. For accuracy, we present the reconstruction error, which is the
difference between the ground-truth 12-lead ECG signals from the dataset and
the reconstructed signals, using mean squared error (MSE) and mean absolute
error (MAE), which are standard metrics in signal reconstruction tasks [12, 27].
Model efficiency: In Figure 3, the left y-axis shows the number of param-
eters (in millions, bars), while the right y-axis shows GFLOPs (a line with
dots). mEcgNet achieves the smallest number of parameters at 1.13M, requiring
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Table 2: Disease classification performance.

Models ‘# of parameters (millions) ‘GFLOPS F1-score
Baseline (ground-truth ECG) - - 0.70
EKGAN 32.54 5.71 0.53
ECGrecover 12.57 8.24 0.26
mEcgNet 7.55 4.49 0.66

23.1x fewer parameters than EKGAN and 5.4x fewer than ECGrecover. Also,
mEcgNet exhibits the lowest complexity at 0.84 GFLOPs, achieving a 2.5x im-
provement over EKGAN and a 5.5x improvement over ECGrecover.

Time: Figure 4 shows training time (bars, left y-axis) and inference time (line
with dots, right y-axis). For training, mEcgNet takes 387.24 s, which is 1.8x and
3.7x faster than EKGAN and ECGrecover, respectively. For inference, mEcgNet
also exhibits the shortest time at 17.99 ms, which is 1.4x and 5.4x faster than
the other two, respectively.

Accuracy: Table 1 shows the ECG reconstruction errors. Note that instead
of using the reported values from the original papers, we reproduce the errors
for the two SOTA models because 1) the two used different datasets, and 2)
EKGAN used a non-public private dataset that cannot be tested by others. For
the PTB-XL dataset, mEcgNet achieves the lowest errors. Specifically, for MSE,
its error is 5.8% and 22.1% lower than EKGAN and ECGrecover, respectively,
and for MAE; it is 0.8% and 17.1% lower than the two models. For the Chapman-
Shaoxing dataset, mEcgNet also demonstrates the lowest errors; its MSE value
is 11.4% and 9.2% lower than EKGAN and ECGrecover, respectively, and its
MAE value is 3.4% and 6% lower, respectively.

3.3 Disease Classification Performance

We demonstrate how to apply the reconstruction models for disease classification.
We use a clinically validated disease classification model from [21] that takes 12-
lead ECGs as input and detects abnormalities associated with six cardiovascular
diseases. Since the classification model requires 12-lead ECGs of length 4,096, we
linearly interpolate the reconstructed ECGs (length of 512 as [8,13]) to 4,096.
We evaluate model efficiency and accuracy for the combined ECG reconstruction
and disease classification models. Accuracy is measured as the average Fl-score
for six diseases.

Table 2 shows the disease classification performance. We present the accu-
racy and model efficiency on the test dataset from [21]; the other datasets show
similar outcomes. The baseline in the table means that the ground-truth 12-lead
ECG signals are fed into the classification model without ECG reconstruction.
mEcgNet demonstrates better efficiency, achieving on average 3x fewer parame-
ters and 1.6x fewer GFLOPs than EKGAN and ECGrecover. In terms of accu-
racy, mEcgNet’s F1-score differs from the baseline by only 5.7%, and it is 24.5%
and 153.8% higher than EKGAN and ECGrecover, respectively.
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Table 3: Ablation study. FSP: frequency-based segment partitioning.

Models ‘Params‘GFLOPs‘ MSE
U-Net (baseline structure) 6.23 0.96 [0.121
EcgModule-L + FSP 1.97 097 |0.113
Full mEcgNet (EcgModule-L + EcgModule-S + FSP)| 1.13 0.84 |(0.113

Table 4: Ablation study results for hyperparameter choices.

Models |MSE ~ Number of Order | MSE | Order [MSE
segments | MSE

U-Net [22] 0.121 s,s, s|o.122|L, s, slo.117
Transformer [28] 0.123 2 0.1179

LSTM autoencoder [24]|0.152 3 0.1132 S, S, L|0.113|L, L, 5/0.113
Autoencoder [3] | 0.242 4 0.1133 S, L, L |0.116 |L, S, L|0.114
VAE [9] 0.279 5 0.1149  L,L,L|0.113]S, L, $[0.119

(a) Model. (b) Segments. (c) Modular architecture.

3.4 Ablation Study

First, we evaluate the individual components of mEcgNet by comparing recon-
struction errors, as shown in Table 3. We use the PTB-XL dataset since the
results on the Chapman-Shaoxing dataset were similar. Specifically, we test: 1)
U-Net, the baseline structure of mEcgNet; 2) the EcgModule-L structure with
frequency-based segment partitioning; and 3) the full mEcgNet, incorporating
both EcgModule-L and EcgModule-S with frequency-based segment partition-
ing. Table 3 shows that the full mEcgNet (third case) achieves the best efficiency
and accuracy among the designs. In comparison with the U-Net baseline struc-
ture, the full mEcgNet requires 5.5x fewer parameters, has 1.1x lower GFLOPs,
and achieves a 6.6% improvement in MSE.

Next, Table 4 presents the ablation results for different hyperparameter
choices. First, Table 4a compares various deep learning architectures commonly
used in the medical domain. U-Net, our baseline structure, yields the lowest er-
ror. Second, Table 4b shows how accuracy varies when the number of partitioned
segments is changed from 2 to 5. The three segments produce the lowest error,
so we select three segments. Third, Table 4c¢ reports the errors when the three
segments are processed by either EcgModule-S or EcgModule-L. The order in
the table indicates the EcgModule types for three segments. For example, the
order “S, S, L” means that EcgModule-S, EcgModule-S, and EcgModule-L are
used for the lowest-, medium-, and highest-frequency segments. The “S,; S, L”
order shows the lowest error; thus, we select the order for mEcgNet’s structure.

4 Conclusion

In this paper, we introduce mEcgNet, a parameter-efficient model for recon-
structing 12-lead ECG signals. A key idea of mEcgNet is to partition frequency
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segments and to process them in a modular structure. Experiments on public
ECG datasets demonstrate that it reduces the number of parameters, inference
time, and reconstruction errors by ~23.1x, ~5.4x, and ~22.1%, respectively,
compared to SOTA models. In this work, we find that mEcgNet is lightweight
enough to achieve fast yet accurate inference even on wearable IoT devices,
making it suitable for real-time ECG monitoring. In future work, we will explore
federated learning for ECG reconstruction to improve the training efficiency
without centralizing personal ECG data.
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