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Abstract. Perivascular spaces (PVS), also known as Virchow-Robin
spaces, are critical biomarkers for diagnosing cerebral small vessel disease
(CSVD). Quantifying PVS visible in magnetic resonance imaging (MRI)
is essential for understanding their relationship with various neurological
disorders. Traditional methods for assessing PVS rely on visual scoring
of MRI images, which is time-consuming, subjective, and unsuitable for
large-scale studies. Additionally, due to their small size, scattered dis-
tribution, and complex morphology, PVS can easily be confused with
neighboring structures, posing significant challenges for their accurate
extraction. In this paper, we propose a novel graph interaction-enhanced
model based on vision-language modeling (VLM) technology for accurate
PVS extraction from MRI. Our approach leverages textual information
to guide image feature extraction and employs a graph structure to en-
hance cross-modal interactions, facilitating the reasoning of relationships
between different modalities. Furthermore, we introduce a cross-modal
attention mechanism for global feature alignment and an attention-based
dynamic fusion module to effectively integrate multi-modal information,
improving the accuracy of PVS segmentation. Validated on an indepen-
dent T1-weighted dataset, our model demonstrates superior performance
in capturing both global and local information, addressing the limitations
of traditional image-only models and providing a robust solution for PVS
segmentation in complex clinical scenarios.
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Fig. 1. T1-weighted MR images of perivascular spaces (PVS) are displayed in axial,
coronal, and sagittal planes. The highlighted areas in the yellow boxes are magnified
on the right side for detailed visualization.

1 Introduction

The space around small intracranial blood vessels is known as the perivascular
space (PVS) or Virchow-Robin space [1]. Abnormal manifestations of the PVS,
such as enlargement or an increase in the number of PVS, have been shown
to be associated with various neurological disorders [2], including small-vessel
disease [3], Alzheimer’s disease [4], and multiple sclerosis [5]. These associations
make the PVS an important biomarker for studying brain health and diseases[6].
Traditionally, clinicians have relied on visual scoring based on 3T MRI images to
assess PVS [7, 8], but this approach requires extensive clinical experience. It is
not only time-consuming but also subject to limitations such as lower and upper
boundary effects, making it unsuitable for large-scale studies and clinical ap-
plications. Additionally, PVS are usually small, scattered, and morphologically
complex, and depending on their orientation and angle, they can exhibit linear
and circular shapes, among others, and can be easily confused with neighbour-
ing structures [9], as shown in Figure 1. Therefore, there is an urgent need for
automated methods to address the challenges of PVS segmentation.
Previously, researchers developed many segmentation methods for PVS in
anticipation of accurate quantification and analysis of the volume of PVS. These
methods can be classified into traditional methods based on information such as
low-level features (e.g., grey values, morphological features) [10-12] and a priori
knowledge of the image, and data-driven deep learning-based methods [13-15].
Among these methods, Ballerini [10] et al. achieved PVS segmentation by op-
timizing and evaluating the parameters of the Frangi filter using an ordered
logit model and a visual rating scale as substitutes for ground truth labels.
Niazi [11] et al. and Cai [12] et al. employed edge detection and K-means clus-
tering, respectively, for PVS segmentation. While interpretable, these methods
require manual tuning and are time-consuming, often failing to find globally
optimal parameters. With the advancement of deep learning technology, many
deep learning-based techniques have been proposed to improve PVS segmen-
tation. Huang [14] developed a nnUNet-based method suitable for multi-center
clinical imaging; however, it still struggles to handle small and dispersed PVS
structures. Lian [15] designed a multi-scale CNN model that provides rich con-
textual information, but this method depends on 7T MRI data, whereas most
clinical imaging uses 3T MRI, making it less practical for real-world applications.
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Therefore, despite these advancements, there remains an urgent need for flexible
and accurate methods capable of segmenting small, scattered, and low-contrast
PVS structures in complex clinical scenarios.

Recently, Vision-Language Modeling (VLM) [16,17] has gained attention for
learning joint image-text representations and demonstrating strong generaliza-
tion across vision tasks. In PVS segmentation, where structures are often small,
scattered, and low-contrast, traditional image-only models struggle to capture
morphological details. For this reason, we introduce the VLM framework to ad-
dress this, leveraging linguistic information to better understand PVS morphol-
ogy and distinguish it from similar structures. Textual descriptions also provide
spatial cues, aiding precise PVS localization and reducing interference from sur-
rounding anatomy. Meanwhile, to further enhance fine-grained detail capture,
we integrate VLM with a Graph Convolutional Network (GCN) [18-20]. GCN
models interactions between entities through graph structures, enabling effec-
tive cross-modal interaction and better capturing complex local relationships,
thereby improving the representation of subtle PVS features. Finally, we propose
a cross-modal cross-attention module and dynamic multi-modal fusion module
for precise global feature alignment and modality integration. This approach
retains VLM’s cross-modal strengths while significantly boosting segmentation
accuracy for challenging PVS cases, overcoming the limitations of image-only
models. The main contributions are summarized as follows:

(a) We propose a vision-language model for PVS segmentation, leveraging tex-
tual information to enhance the model’s understanding of PVS morphology.
This innovation addresses the limitations of image-only methods in identi-
fying small, low-contrast PVS structures, improving segmentation accuracy.

(b) We design a novel cross-modal graph interaction enhancement module that
models relationships between different modalities through a graph structure.
By utilizing textual cues to capture fine-grained local features, it enables
precise cross-modal feature interaction, enhancing the model’s ability to rec-
ognize PVS boundaries and morphology.

(¢c) We propose a cross-modal attention strategy and a dynamic multimodal fu-
sion module to achieve global feature alignment and seamless information
integration. This approach enhances multimodal complementarity and opti-
mizes segmentation performance.

2 Proposed Method

The proposed PVS segmentation framework consists of four main components: a
language-vision framework, a multimodal graph interaction enhancement mod-
ule, a cross-modal global information alignment module, and a multimodal fusion
module, as shown in Fig. 2. Given an image and a natural language description
of the target object, the model generates pixel-level segmentation predictions. In
the language-vision framework, BERT, a pre-trained language model developed
by Google, is used as the text encoder. The image encoder is designed as a nested
U-network for richer feature learning.
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Fig. 2. Schematic diagram of the proposed PVS segmentation network, containing the
overall framework of the network and specific details of the proposed modules.

2.1 Multimodal Graph Interaction Enhancement Module

Multimodal Graph Interaction: For the VLMs framework, better feature
alignment as well as inter-modal information interaction is the key to improve
the model performance. The MGIE module first performs feature interaction
between text and image through the graph structure, and then subsequently
performs complementary enhancement using the textual and image information
respectively. The specific steps are as follows, given the input features F €
RPXHXWXC and Fr € RT*C where I denotes the image and T denotes the
text. The features are transformed into embedded representations G € RE*¢
and Gy € RE*C of graph nodes through graph projection GP™ operations. We
parameterise G using L € RE*¥ and o € RE*¥, where is L randomly initialised
with K = 10 center notes and ¢ is a measure of the range of the input feature
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in relation to that node. The nodes are computed as follows:
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Where S is the soft assignment matrix, obtained from the residuals of each
input feature with respect to the centre node and normalised by the standard
deviation, which indicates the strength of the input features with respect to the
node, and then the features are aggregated to the node to generate the final node
representation. In addition, the edges of the graph are implicitly represented in
the assignment matrix as the relationship between the input features and the
nodes. Thus the adjacency matrix of the graph can be expressed as: Aq; = (GT x
G). Next the graph interaction G'™*** operation models the relationships between
graphs. As shown in Fig. 2, G™*" adopts the cross-attention mechanism, G-t and
G are first converted to Qgraph, Kgraph and Veraph by MLP, and then the matrix
multiplication method is used to construct the attention score matrix Ade‘I =
(QT x Ki) and A}i'jT = (QF x Kr), and weighted to the original Vgwapn to get
the final output. W denotes the weighting parameter to adjust the importance
of GI™er relative to Grp and Gf.

G = WAL x Vp) + G, Gy = W(ALT x W) + Gy (3)

nodey, =

(2)
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After executing G'** | the graph reasoning G*** is utilized to send G7p and G as
inputs to the constructed graph convolution G for inference updating, and the
interacted features are output using the reprojection operation.

Gy = G {Gr (AL x G x Wi}, Fy = G {MrGiT + Fr} ()
Gl = G {Gi(AY x G, x W)}, Fy = G (MG + B} (5)

Where M is the assignment matrix in GP™, used to reconstruct the graph fea-
tures into the original features, and W denotes the learnable weight parameters.
Multimodal Graph Enhancement: The post-interaction text and image fea-
tures not only enhance the representation of intra-modal information, but also
incorporate cross-modal interaction information. Therefore, in the graph en-
hancement step, we first weight the post-interaction text features and image
features with Frusion = F} X FI/ using the channel multiplication operation, and
then transform them into text-based node embeddings T' = {t1,t2...,¢;} and
image-based node embeddings I = {i1,i2...,i;} via GP™, respectively. Sub-
sequently, the edge relationship between the two is constructed by means of
K-NN, which in turn connects f' € Fi. = and t; as well as ff € F},  and
i; are connected by means of K-NN, which in turn generates the text-support
graph G} and image-support graph GL. Formally, the text-edge embedding and
the image-edge embedding can be expressed as:

Ti/,j = fConV(fiT - tj)v Iz(%j = fConv(fiI - tj)7 (6)
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where fcony 18 used to compute the feature difference embedding. In addition,
the number of nearest neighbour edges is set to 5 for calculating the edge rela-
tionships. Finally maximum pooling aggregation is performed on all the support
nodes connected to ;' and f! to get the most significant features.

2.2 Multimodal Cross-Attention Module

The graph structure can effectively model local relationships and topological
structures but has limitations in capturing global relationships. Therefore, we
design a multimodal cross-attention module to model global relationships and
non-local interactions, further refining the interaction-enhanced features. Specif-
ically, we transform the image and text features into Key, Value, and Query
representations, then compute attention weights by interacting Query with Key
and apply these weights to Value. Finally, residual connections, feature con-
catenation, and a feed-forward network are employed to fuse and optimize the
interaction features, producing enhanced image and text representations.

2.3 Multimodal Feature Fusion Module

The final step fuses the two modalities for output. Traditional methods use
pixel-wise concatenation or feature multiplication, but expanding text features
to match image dimensions weakens positional information. To address this,
we design a dynamic fusion module using an attention mechanism. First, self-
attention-based weighted pooling highlights relevant text features while reducing
redundancy. Then, additive and multiplicative interactions between text and
image features are fed into an attention module to generate dynamic spatial
weights, representing the importance of each feature at different locations. Fi-
nally, these weights refine both modalities to produce the fused features.

3 Experimental Results

Dataset: The method was validated on a private dataset consisting of 3D T1-
weighted images from 50 subjects. The annotations were performed manually
by two experienced clinicians and subsequently reviewed and refined by a senior
expert. The acquisition of all images was approved by the relevant regulatory
authorities, and informed consent was obtained from all patients, in compliance
with the Declaration of Helsinki.

Implementation Details: Our method was implemented using the PyTorch
framework and trained on two NVIDIA GeForce GTX 4090 GPUs. The model
was optimized using the Adam optimizer with a cosine annealing learning rate
decay strategy. The initial learning rate was set to 0.001, with a batch size of
4, and training was conducted for 1,000 epochs. During training, the original
images were cropped to a size of 96x96x96 and subjected to random rotations
along three axes. Finally, 5-fold cross-validation was employed to evaluate the
performance of the model.
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Fig. 3. Comparison of segmentation results with nnUnet [21], the yellow box shows
the comparison of segmentation details with square large processing.

Table 1. Performance comparisons for PVS segmentation.

Methods PVS segmentation
DICE IoU Recall Precision
CS2-Net [22] 0.3530 0.2226 0.3138 0.4908
UNetr [23] 0.3809 0.2565 0.3625 0.5017

Swin-UNetr [24] |0.4230 0.2728 0.4042 0.5128
SHIVSV1-Net [13]] 0.4966 0.3109 0.4357 0.5344

SHIVSV2[13] 0.5012 0.3457 0.4574 0.5417
PINGUFS]} 0.5733 0.4079 0.5129 0.6034
nnUNet [21 0.5797 0.4127 0.5580 0.6107
Propose 0.6042 0.4390 0.5771 0.6571

Comparison with State-Of-The-Arts: To evaluate the performance of our
model, we compared it with several classical 3D medical image segmentation
methods, including the CS2-Net [22], UNETR [23], SwinUNet [24], and nnU-
Net [21]. Additionally, we evaluated our model against publicly available T1-
weighted image PVS segmentation methods, namely PINGU [25], SHIVSV1 and
V2 [13]. PINGU [25] is built upon nnU-Net [21], while SHIVSV1 and V2 [13]
are based on ResNet3D and 3D U-Net, respectively. For a fair comparison, we
utilized the pre-trained weights provided by these methods for validation.
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Table 2. Ablation results for PVS segmentation.

Methods PVS segmentation
DICE IoU Recall Precision
Backbone 0.5338 0.3641 0.4539 0.5361
Backbone + VLM 0.5515 0.3857 0.4716 0.6729
Backbone + VLM + MGIE 0.5828 0.4158 0.5510 0.6270

Backbone + VLM + MGIE + MCA 0.5 0.4260 0.5613 0.6515
Backbone + VLM + MGIE + MCA + MFF [0.6042 0.4390 0.5771 0.6571

o
w
ot

The quantitative results are shown in Table 1. We selected the Dice similarity
coefficient (Dice) and Intersection over Union (IoU) as the primary evaluation
metrics, with Precision used to assess false positives and Recall to highlight
false negatives. The comparison results demonstrate that the proposed method
achieves the best performance, with a Dice score of 60%. Fig. 3 presents the vi-
sualization results. Notably, to more comprehensively compare the performance
of different methods in various regions of the image, we conducted a visual com-
parison with nnU-Net, which achieved the best performance among the baseline
methods. As shown in the figure, our method achieves outstanding segmentation
across different PVS regions, whereas nnU-Net exhibits several false positive and
false negative segmentations.

We attribute these results to the use of text guidance for image segmenta-
tion, which enables the model to better locate target regions while eliminating
interference from non-target areas. Additionally, improved modality interaction
and alignment further enhance the accuracy of the VLM-based model.
Ablation Study: To verify the effectiveness of the proposed framework and
its individual modules for PVS segmentation, we conducted an ablation study
based on a nested U-shaped CNN framework as the backbone. We successively
added the VLM structure, the multimodal graph interaction enhancement mod-
ule, the cross-modal attention module, and the dynamic fusion module to an-
alyze their impact. Table 2 presents the quantitative results of this analysis.
The results show that VLM significantly improves the baseline performance of
PVS segmentation. Furthermore, with the addition of the local graph interaction
enhancement module, the global cross-modal attention module, and the multi-
modal fusion module, segmentation accuracy continuously improves. Ultimately,
our method achieves a Dice score of 60%.

4 Conclusion

In summary, this study proposes a novel approach to address the challenge of
PVS segmentation in T1-weighted MRI images. The proposed method adopts a
VLM framework, integrating graph structures to enhance local cross-modal in-
formation interaction. Additionally, cross-attention is leveraged for global cross-
modal learning, followed by a dynamic fusion strategy for modality integration.
The results demonstrate that utilizing text to provide prior guidance for image
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segmentation, along with sufficient cross-modal interaction and fusion, can sig-
nificantly improve PVS segmentation accuracy. This has important implications
for aiding the clinical diagnosis of various neurological diseases. In the future,
we will explore the application of this method in multimodal imaging.
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