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Abstract. Kidney tumors can be highly heterogeneous from the micro-
scopic to the macroscopic scale. To address this, we propose a sparsity-
informed probabilistic integration of radiomics and pathomics for kidney
cancer analysis. We construct radiology and pathology graphs to model
spatial correlations, then use a probabilistic method and graph neural
networks to identify biomarkers and aggregate spatial features. Our val-
idation shows that this integrated approach significantly outperforms
traditional methods in kidney survival analysis, achieving a notable im-
provement of 0.084 in the concordance index, enabling better prognostic
assessments for kidney cancer patients. The source code has been released
by https://github.com/shangqigao/RadioPath.
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1 Introduction

Kidney cancer exhibits significant heterogeneity across multiple scales, as re-
vealed by genomic, histologic, and radiomic analyses [1-3]. Integrating these
sources of heterogeneity within a single framework could reveal new insights
into the nature and evolution of these tumors [4]. In particular, the fusion
of the two most widely available imaging data sources, radiomics and path-
omics—radiopathomics—remains mostly underexplored, limiting the potential
for precision medicine approaches.

Radiological imaging can capture the macroscopic spatial heterogeneity of
tumors, aiding prognosis by extracting radiomic features. Previous kidney can-
cer radiomics studies have used machine learning and deep learning to analyze
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hand-crafted or deep features from radiological images for survival prediction.
Khodabakhshi et al. [5] combined hand-crafted radiomic and clinical features
to predict renal cell carcinoma survival, while Hon et al. [7] used deep neural
networks for a similar approach in non-small-cell lung cancer. Recent foundation
models in medical imaging show promise in understanding organs and tumors
[25, 24], but their applications for prognosis have not yet been extensively stud-
ied.

Digital pathology captures tissue architecture and molecular characteristics,
essential for cancer diagnosis and prognosis. Deep learning models analyze whole
slide images (WSIs) patch by patch to understand histopathological patterns.
Tabibu et al. [6] used CNNs to identify tumor regions and extract morpholog-
ical features for ccRCC survival prediction, while Chen et al. [11] showed that
transformer-based pathomic features outperform CNN-based ones in prognosis.
Recently, foundation models in pathology have achieved state-of-the-art perfor-
mance in tasks like subtyping [8], captioning [10], and survival prediction [9],
demonstrating their potential for improved cancer analysis.

The complementary strengths of radiological imaging and digital pathology
offer promise for personalized cancer treatment and prognosis. Radiopathomics,
the integration of radiomics and pathomics, has been explored in breast [12],
gastric [13], lung [14], and prostate cancer [15]. Ning et al. [16] combined CNN-
extracted radiomic and pathomic features with genomic and clinical data to
predict clear cell renal cell carcinoma survival, but their approach was limited
by small datasets. The potential of advanced foundation models in radiology and
pathology has not yet been studied due to challenges in model design and data
heterogeneity.

A major challenge in radiopathomics is large-scale spatial aggregation, where
traditional methods like global average pooling or gated attention risk losing
sensitivity due to the curse of spatial dimension [16,9]. To address this, we
explore probabilistic integration of renal radiology and pathology using graph
neural networks (GNNs). Our contributions are: (1) We introduce a sparsity-
informed probabilistic model that statistically reconnect radiomics, pathomics,
survival data, and spatial importance, as shown in Fig. 1 (a); (2) To enhance
spatial sparsity, we incorporate a Student’s t prior and employ graph neural
networks to effectively learn spatial importance; and (3) we validate the proposed
probabilistic integration method by predicting overall survival in kidney cancer
using various radiological and pathological foundation models.

2 Methodology

2.1 Statistical modelling and variational inference

Statistical modeling. Given extracted multi-omics X = {X,, X, } and target
y € R¥ where X, € R™ " and X,, € R™»*"» denotes radiomics and pathomics
respectively, we can solve the statistical model in Fig. 1 by maximum a posteriori
(MAP) estimation:

p(s,v|X,y) < p(X,y|s,v)p(s,v). (1)



Title Suppressed Due to Excessive Length 3

Target
Precision

Importance

®*®

(a) Multi-omics

Fig. 1: Probabilistic integration of radiomics and pathomics. (a) Probabilistic
graphical model for the integration of radiomics and pathomics. (b) Pipeline of
inferring spatial importance and precision, and aggregating spatial features for
survival prediction.

Here, s denotes the spatial importance conditioned on its precision v. However,
the joint prior distribution, p(s,v) = p(s|v)p(v) is unknown and we need to se-
lect proper priors at first. To enforce the sparsity of s, we assign p(s,v) with a
Normal-Gamma prior N'G(ug, Ao, o, B0), where, p(s|v) = N (uo, diag(Agv) 1),
p(v) = G(ag, Bo), 1o denotes the mean and Agv is a scaled precision controlling
the sparsity. In this case, the marginal distribution p(s) = [ p(s,v)dv is a Stu-
dent’s t distribution, which is known as a long-tailed distribution often used for
modeling sparsity.

Variational inference. The MAP problem is still intractable since p(X, y|s, v)
is unknown in practice. To tackle the difficulty, we introduce a variational dis-
tribution ¢(s,v|X,y) = q(s|X)q(v|s) to approximate the posterior distribution
p(s,v|X,y) by minimizing the Kullback-Leibler (KL) divergence of the former
and the latter, which is equivalent to maximize the evidence lower bound,

max Eq(s,v)2.9) [np(y| X, 0)p(X]s)] = K L(g(s|X)q(vs)||p(slv)p(v)).  (2)
The second term of Eq. (2) can be further factorized as,
ot KL 0l Ip(slo))] + By (KL 0. (3)
For feasibility, we assume q(s|X) = N (us,07) and q(v|s) = G(aw, Bu), Then,
minimizing Eq. (3) over ¢(vl|s) leads to,
oy =209+ 1 and B, = 280 + Xo(ps — 110)* + Ao (4)

Here, the hyperparameters are set to ag = 2, B9 = 1 x 1072, g = 0, and A\g = 1.
After that, ¢(s|X) is optimized by

Jin Bq(ols) [KL(a(s|X)][p(s]0))] = Eqqojs) I p(y] X v)] = Eqgaj2) Inp(X]s)]. - (5)
Here, the first term drives the sparsity of s, the second term enforces the consis-
tency between predictions and targets, and the last term induces a variational
auto-encoder for self-supervised learning.
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2.2 Deep inference by graph neural networks

Modelling of spatial correlation. Spatial correlation is crucial for spatial ag-
gregation and regression. To model the spatial correlation of radiological images
and whole slide images, we construct radiological and pathological graphs by
(1) extracting patch-level feature using foundation models, (2) clustering based
on spatial distance and feature distance, and (3) building spatial connection by
constructing graphs. The detailed process of constructing graphs is similar to
previous works [17].

Pooling module. Multi-omic graphs contain over ten thousand nodes, mak-
ing direct spatial regression computationally inefficient and prone to the curse of
dimensionality. To address this, we use graph neural networks for aggregation.
Specifically, we employ graph convolutional layers (GCNconv) to propagate spa-
tial information and apply top-k pooling to select important nodes, where k, the
pooling ratio, is set to be 0.2. As shown in Fig. 1, our pooling module consists
of two pooling layers (green bars) integrating GCNconv and top-k pooling for
efficient node selection.

Multi-omics encoder and decoder. The distribution ¢(s|X) is estimated
by an encoder which maps multi-omics X = {X,,X,} to sparse importance
score s € sz(m”‘mp), where k denotes the pool ratio of the pooling module. To
mitigate the different feature dimension between radiomics and pathomics, two

encoders, i.e., Fpe and Eye, are built to project them into the same dimensional

features, namely, s” = [s], sT], where s, = Ep:(X,) and s, = Eye (Xp). Thus,

q(s|X) is parameterized by gg,(s|X), where 0 = {05, 05}. Similarly, the distri-
bution p(X|s) is estimated by two decoders which map the sparse importance
score s to the multi-omics X = {X,, X, }. Symmetrically, two decoder branches
(blue bars), i.e., Dga and ng are built to recover radiomics and pathomics,
namely, X, = ng (sr) + N, and X, = ng (sp) + Np, where N, and N, denote

Gaussian noise. Hence, p(X|s) is parameterlzed as,
pop, (X|s) = N(Xp[Doa(sr), Ir /70 )N (Xp| Doa (sp), Ip/7p), (6)

where, 0p = {02, p} 7 and 7, are hyperparameters set to 1 x 1073.
Sparsity-Informed Spatial Aggregation (SPARRA). The distribution
p(y|X, v) induces a task-specific predictor consists of spatial regression and mul-
tivariate regression. Specifically, the spatial regression aims to integrate spa-
tial feature vectors using the precision v € sz(mr"’mp), which is achieved by
X = [0 fpoot(Xr), 0 fpoot(Xp)], where 0. denotes a normalized inverse preci-
sion, namely 0. = v=!/|[v7 1, and foo(X.) € R¥ (metmu)xni denotes the
output of the pooling module with the hidden dimension as nj. Note that while
SPARRA is built on multi-omics data, it remains effective for a single modal-
ity by limiting multi-omics to either radiomics or pathomics. The multivariate
regression aims to predict targets from the aggregated feature vector x, which
allows us to predict y by a linear layer fp, , (x), then p(y|X,v) is expressed as,

0, (W1.0) = 2 D{=D(y, fo,,, ()}, (7
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where, Z is a normalizing constant, 8, = {0g, 0,,;,} denotes the set of all pa-
rameters related to the prediction, and D(-,-) denotes the negative partial log
likelihood for survival analysis.

Training loss function. Based on the parameterized qp,, (s|X), po, (X]s),
and py, (y|X',v) by neural networks, we obtain a loss of training neural networks
from Eq. (5) as follows,

min Equls) [KL(go (s|X)|lp(s|v)) — Inpe, (y| X, v)] — Eqp  (s1) Inpop, (Xs)] (8)

op

3 Experiments

3.1 Datasets and implementation details

Datasets. The TCGA-RCC datasets (TCGA-KIRC [18], TCGA-KIRP [19],
TCGA-KICH [20]) contain 947 subjects with digital slides, while TCIA includes
272 matched subjects with CT scans. For radiomics extraction, we trained a
SegResNet [22] using KiTS23 [21] for kidney tumor segmentation and tested it
on the 272 CT scans. After manual validation and clinical data matching, 205
subjects with WSIs, CT scans, and clinical records were selected, comprising 180
from TCGA-KIRC, 15 from TCGA-KIRP, and 10 from TCGA-KICH. We then
performed 5-fold cross-validation, splitting the 205 samples into an 8:2 ratio,
with 164 for training and 41 for testing in each fold.

Feature extraction and graph construction. For radiomics, we used
three feature extractors: Pyradiomics [23] for hand-crafted features, M3D-CLIP
[24] for projecting volumetric CT scans into feature vectors, and SegVol ViT
[25], which maps 3D CT scans to 4D feature tensors while preserving spatial
information. For pathomics, we included HIPT [11], a transformer trained on
large-scale WSIs, along with UNT [8], CONCH [10], and CHIEF [9], foundation
models achieving state-of-the-art performance in computational pathology. Using
the extracted radiomic and pathomic features, we constructed radiological and
pathological graphs for CT scans and WSIs, respectively.

Univariate feature selection. Given the high dimensionality of extracted
features, we performed univariate Cox regression to select relevant features, re-
taining those with a p-value below 0.2 to avoid excluding rare but important
ones. This loose threshold ensures key features are preserved for regression. How-
ever, our SPARRA model does not require feature selection, as it automatically
identifies important features.

Multivariate models and metrics. To evaluate the integration of ra-
diomics and pathomics, we used four survival models: random survival forest
(RSF), Cox proportional hazards model with ridge regression (CoxPH), Cox
proportional hazards model with elastic net (Coxnet), and fast survival support
vector machine (FSVM). For RSF, we used 5-fold cross-validation on training
samples to select the optimal max depth, while for CoxPH, Coxnet, and FSVM,
we selected regularization parameters through 5-fold cross-validation. Survival
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Fig. 2: Kidney cancer survival analysis based on (a) radiomics and (b) pathomics.

prediction performance was assessed using four metrics: Concordance index (C-
Index), Concordance index with inverse probability of censoring weights (C-
IPCW), cumulative/dynamic AUC (C-AUC), and Integrated Brier Score (IBS).

Implementation. We trained the models using the ADAM optimizer with
an initial learning rate of 3 x 10™%, decayed following a cosine annealing schedule.
The total number of training steps, the rate of weight decay, and the probability
of dropout, and the batch size were set to 20, 1 x 1075, 0.5, and 32, respectively.
All models were trained and tested on an NVIDIA L40 GPU with 48GB of
memory.

3.2 Survival analysis by radiomics

In this section, we evaluated kidney cancer survival prediction using radiomics
by comparing feature extractors (Pyradiomics, M3D-CLIP, and SegVol ViT) and
aggregation methods (mean pooling, attention-based multiple instance learning
(ABMIL), and the proposed SPARRA). During training, ABMIL and SPARRA
were optimized by minimizing the negative partial log-likelihood [9]. For testing,
we aggregated features using Mean, ABMIL, and SPARRA, then performed
survival analysis and reported results from 19 studies, including C-Index (1),
C-IPCW (1), and C-AUC (1) for four survival models, IBS ({) for three models,
and average scores across models.

Fig. 2a compares survival prediction performance using four survival models
and metrics. Among Pyradiomics, M3D-CLIP, and SegVol ViT + Mean, SegVol
ViT outperforms the others in 11 out of 19 studies, highlighting its ability to bet-
ter represent tumor texture. For SegVol ViT, SPARRA outperforms Mean and
ABMIL in 8 studies, while ABMIL leads in 7 studies, indicating that SPARRA
and ABMIL deliver comparable performance. This may be due to radiomic fea-
tures extracted from the different tumor subregions all containing information
relevant for survival prediction.

3.3 Survival analysis by pathomics

In this section, we evaluated kidney cancer survival prediction using pathomics
by comparing feature extractors (HIPT, UNI, CONCH, and CHIEF) and ag-
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gregation methods (Mean, ABMIL, and SPARRA). The training and testing
settings were consistent with those in Section 3.2.

Fig. 2b compares survival prediction performance using different pathomics
and survival models. For Mean aggregation, UNI outperforms HIPT, CONCH,
and CHIEF in 13 out of 19 studies, indicating that UNI better captures tu-
mor microenvironments. When comparing aggregation methods based on UNI,
SPARRA outperforms Mean and ABMIL in 12 out of 19 studies, showing signif-
icant improvements in C-Index and C-AUC. This highlights SPARRA’s ability
to identify sparse biomarkers crucial for survival prediction. Notably, ABMIL
performs worse than Mean across the four metrics due to overfitting on path-
omics.

3.4 Survival analysis by radiopathomics

In this section, we evaluated the integration of radiomics and pathomics for
kidney cancer survival prediction. Using SegVol ViT for radiomics and UNI
for pathomics, we compared three aggregation methods—Mean, ABMIL, and
SPARRA—following the same settings as in Sections 3.2 and 3.3.

Table 1 presents the results for kidney cancer survival analysis using ra-
diopathomics. SPARRA outperforms the other aggregation methods in 14 out
of 19 studies, showing significant improvements in C-Index, C-AUC, and IBS. In
contrast, ABMIL performs worse than mean aggregation due to overfitting on
pathomics, as shown in Section 3.3. SPARRA, by incorporating a sparse prior,
effectively regularizes feature aggregation and prevents overfitting.

Fig. 3 shows the mean scores and standard deviation bands from 5-fold cross-
validation. Radiomics-based models exhibit narrower bands, indicating greater
stability in survival prediction. Compared to Mean and ABMIL, SPARRA-based
models reduce standard deviations in pathomics. Particularly, SPARRA can sig-
nificantly improve the C-Index and C-AUC of CoxPH by integrating radiomics
with pathomics. This demonstrates that SPARRA identifies more robust fea-

Radiopathomics
Extractor | Aggr.

Metric RSF CoxPH Coxnet FSVM Avg.

C-Index | 0.6140.085 | 0.6350.077 | 0.6140.122 | 0.6300.086 | 0.6230.003
SegVol ViT Mean C-IPCW 0.6400.178 0.7460_065 0.759¢.037 0.7460_()67 0-7230.087
UNI C-AUC | 0.6190.104 | 0.6280.113 | 0.6210.157 | 0.6270.122 | 0.6240.124

IBS 0.1910.019| 0.2930.083 | 0.2830.061 N//A 0.2560.054
C-Index 0.5970.001 | 0.6240.093 | 0.6140.083 | 0.6230.091 | 0.6150.090
SCgVOl ViT ABl\/HL C—IPCW 0.6120_133 0.7640,052 0.6400,201 0.7500,055 0.6920,124
UNI C-AUC | 0.5670.132 | 0.6200.130 | 0.6040.106 | 0.6210.136 | 0.6030.126

IBS 0.2250.028 | 0.2470.032 | 0.2710.043 N/A 0.2480.034
C-Index |0.6840.063|0.7160.064|0.7060.071|0.7210.063|0.7070.065
SegVol ViT SPARRA C-IPCW 0.6120.179 | 0.7420.004 0~735(].083 0.7470.103 0‘709[)115
UNI C-AUC |0.6740.054|0.7110.077|0.6810.105|0.7140.064|0.6950.075

Table 1: Kidney cancer survival analysis based on radiopathomics. Bold denotes
the best performance.
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Fig. 3: Kidney cancer survival analysis based on radiopathomics.

tures for survival analysis. None of the radiopathomic models significantly out-
performs the corresponding pathomics model. This is due to the comparably
lower predictive power of radiomics features in this dataset.

Fig. 4 shows survival functions for low- and high-risk groups identified by
CoxPH using different radiopathomic aggregation methods. Risk groups were
defined by comparing individual risk scores to the mean. All log-rank test p-
values are below 0.005, indicating significant differences between the groups.
However, Mean and ABMIL-based models fail to distinguish between low- and
high-risk groups early on, while the SPARRA-based CoxPH performs better,
highlighting the prognostic potential of SPARRA.
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Fig. 4: Survival functions of low- and high-risk groups based on radiopathomics.
The groups were identified by (a) Mean + CoxPH, (b) ABMIL + CoxPH, and
(c) SPARRA + CoxPH.



Title Suppressed Due to Excessive Length 9
4 Conclusion

In this work, we proposed a sparsity-informed probabilistic integration of ra-
diomics and pathomics. We constructed a probabilistic graphical model to jointly
model radiomics, pathomics, spatial importance, and survival data, incorporated
a sparsity prior to enforce feature sparsity and used variational inference for
model estimation. Our validation on kidney cancer survival analysis demon-
strated the superior performance of this probabilistic integration in radiopath-
omics, enabling better prognostic assessments for kidney cancer patients.

Acknowledgments. This work was supported by the Cancer Research UK Cambridge
Centre [CTRQQR-2021100012; and C9685/A25117], The Mark Foundation for Cancer
Research [RG95043], NIHR Cambridge Biomedical Research Centre (NIHR203312),
and the EPSRC Tier-2 capital grant [EP/P020259/1]. M.C.O. was supported by the
Joseph Mitchell Cancer Research Fund, the Academy of Medical Sciences [G117526|
and NIHR [NIHR206092|. The results shown here are in whole or part based upon data
generated by the TCGA Research Network: http://cancergenome.nih.gov/.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Turajlic, S., Xu, H., Litchfield, K., et al.: Deterministic evolutionary trajectories
influence primary tumor growth: TRACERx renal. Cell 173(3), 595610 (2018).

2. Wang, W., Cao, K., Jin, S., Zhu, X., et al.: Differentiation of renal cell carcinoma
subtypes through MRI-based radiomics analysis. European Radiology 30(10), 5738~
5747 (2020).

3. Li, Y., Lih, T. S. M., Dhanasekaran, S. M., et al.: Histopathologic and proteoge-
nomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness.
Cancer cell 41(1), 139-163 (2023).

4. Hu, J., Wang, S. G., Hou, Y., et al.: Multi-omic profiling of clear cell renal cell
carcinoma identifies metabolic reprogramming associated with disease progression.
Nature Genetics 56(3), 442-457 (2024).

5. Khodabakhshi, Z., Amini, M., Mostafaei, S., et al.: Overall Survival Prediction in
Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical
Information. J Digit Imaging 34(5), 1086-1098 (2012).

6. Tabibu, S., Vinod, P.K., Jawahar, C.V.: Pan-Renal Cell Carcinoma classification
and survival prediction from histopathology images using deep learning. Sci. Rep.
9, 10509 (2019).

7. Hou, K. Y., Chen, J. R., Wang, Y. C., et al.: Radiomics-Based Deep Learning Predic-
tion of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced
Computed Tomography. Cancers (Basel) 14(15), 3798 (2022).

8. Chen, R. J, Ding, T., Lu, M. Y., et al.: Towards a general-purpose foundation model
for computational pathology. Nature Medicine 30(3), 850-862 (2024).

9. Wang, X., Zhao, J., Marostica, E., et al.: A pathology foundation model for cancer
diagnosis and prognosis prediction. Nature 634(8035), 970-978 (2024).



10 S. Gao et al.

10. Lu, M. Y., Chen, B., Williamson, D. F. K., et al. A visual-language foundation
model for computational pathology. Nature Medicine 30(3), 863-874 (2024).

11. Chen, R. J., Chen, C., Li, Y., et al. Scaling vision transformers to gigapixel images
via hierarchical self-supervised learning. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 1614416155 (2022).

12. Xu, N., Guo, X., Ouyang, Z., et al.: Multiparametric MRI-based radiomics
combined with pathomics features for prediction of the efficacy of neoadjuvant
chemotherapy in breast cancer. Heliyon 10(2), €24371 (2024).

13. Tan, Y., Feng, L. J., Huang, Y. H., et al.: A comprehensive radiopathological
nomogram for the prediction of pathological staging in gastric cancer using CT-
derived and WSI-based features. Transl. Oncol. 40, 101864 (2024).

14. Tortora, M., Cordelli, E., Sicilia, R., et al.: RadioPathomics: Multimodal Learning
in Non-Small Cell Lung Cancer for Adaptive Radiotherapy. IEEE Access 11, 47563~
47578 (2023).

15. Zhang, Y. F., Zhou, C., Guo, S., et al.: Deep learning algorithm-based multimodal
MRI radiomics and pathomics data improve prediction of bone metastases in pri-
mary prostate cancer. J Cancer Res Clin Oncol 150(2), 78 (2024).

16. Ning, Z., Pan, W., Chen, Y., et al.: Integrative analysis of cross-modal features
for the prognosis prediction of clear cell renal cell carcinoma. Bioinformatics 36(9),
28882895 (2020).

17. Gao, S., Browning, L., Alham, N. K., et al. Characterising borderline areas in
bladder tumour grading with Bayesian graph neural networks. In: 2024 IEEE Inter-
national Symposium on Biomedical Imaging (ISBI), Athens, Greece, pp. 1-5 (2024).

18. Akin, O., Elnajjar, P., Heller, M. et al.: The Cancer Genome Atlas Kidney Renal
Clear Cell Carcinoma Collection (TCGA-KIRC) (Version 3) [Data set]| (2016). The
Cancer Imaging Archive.

19. Linehan, M., Gautam, R., Kirk, S. et al.: The Cancer Genome Atlas Cervical
Kidney Renal Papillary Cell Carcinoma Collection (TCGA-KIRP) (Version 4) [Data
set] (2016). The Cancer Imaging Archive.

20. Linehan, M. W., Gautam, R., Sadow, C. A., Levine, S.: The Cancer Genome Atlas
Kidney Chromophobe Collection (TCGA-KICH) (Version 3) [Data set] (2016). The
Cancer Imaging Archive.

21. Heller, N., Isensee, F., Maier-Hein, K. H., et al.: The state of the art in kidney
and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the
KiTS19 challenge. Medical Image Analysis 67, 101821 (2021).

22. Myronenko, A: 3D MRI Brain Tumor Segmentation Using Autoencoder Regu-
larization. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries. BrainLes 2018.

23. Griethuysen van, J. J. M., Fedorov, A., Parmar, C. et al.: Computational Radiomics
System to Decode the Radiographic Phenotype. Cancer Research 77(21), e104-e107
(2017).

24. Bai, F., Du, Y., Huang, T., et al.: M3D: Advancing 3D Medical Image Analysis
with Multi-Modal Large Language Models. arXiv eprint: 2404.00578 (2024).

25. Du, Y., Bai, F., Huang, T., Zhao, B.: SegVol: Universal and Interactive Volumetric
Medical Image Segmentation. In: The Thirty-eighth Annual Conference on Neural
Information Processing Systems (2024).



