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Abstract. Positron emission tomography (PET) reconstruction from low-dose to 
standard-dose acquisitions poses a significant challenge in medical imaging. 
While integrating Magnetic Resonance Imaging (MRI) for complementary guid-
ance shows promise for enhancing reconstruction fidelity, current multi-modal 
approaches typically treat PET and MRI uniformly, neglecting their inherent 
asymmetry within the multi-modal context. This leads to insufficient utilization 
of anatomical guidance provided by MRI and neglects the unique metabolic char-
acteristics of PET. To address these limitations, we propose MAK-GAN, a novel 
Generative Adversarial Network (GAN) that incorporates Multi-level Adaptive 
Kernels to distinguish feature extraction and interaction strategies between the 
primary (PET) and auxiliary (MRI) modalities in the asymmetric multi-modal 
PET reconstruction task. Specifically, we design a Multi-Kernel Extraction 
(MKE) block for both PET and MRI branches, replacing linear projections in 
vanilla Transformers with hierarchical multi-kernel convolutions. This enables 
efficient extraction of modality-specific features at multiple scales while reduc-
ing computational overhead. Subsequently, we asymmetrically introduce an 
Adaptive-Kernel Interaction (AKI) block in the PET branch. This block inte-
grates self- and cross-attention modules to dynamically generate weights for 
adaptive kernels, preserving PET-specific characteristics while utilizing MRI’s 
anatomical information. Finally, we incorporate two PET-centric optimization 
strategies to prioritize PET during reconstruction: a residual connection for direct 
LPET-to-SPET mapping, and an edge-aware consistency loss to enforce struc-
tural coherence. Experiments demonstrate superiority on two PET/MRI datasets. 

Keywords: Asymmetric Multi-modal, PET Reconstruction, Adaptive Convolu-
tional Kernels, Feature Extraction and Fusion. 
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1 Introduction 

Positron emission tomography (PET) is a pivotal diagnostic tool for non-invasive phys-
iological imaging [1]. While the standard-dose PET (SPET) provides high diagnostic 
clarity, its reliance on high radioactive tracer doses raises safety concerns [2-4]. Low-
dose PET (LPET) presents a safer alternative but compromises image quality. Conse-
quently, reconstructing high-fidelity SPET from LPET acquisitions has become critical, 
aiming to balance radiation safety with the retention of clinically relevant details. 

Thanks to deep learning (DL), the development of medical image analysis has made 
great progress [5-16]. In PET reconstruction, convolutional neural networks (CNNs) 
initially led the field, with U-Net-based architectures commonly used to build the map-
ping from LPET to SPET. For example, Wang et al. [6] first introduced the Generative 
Adversarial Network (GAN) with conditional mechanisms to enhance high-frequency 
details. However, CNN-based methods struggle to model long-range metabolic depend-
encies due to their focus on local receptive fields. To overcome this, hybrid architec-
tures combining Vision Transformers (ViTs) [11] have emerged, adopting self-atten-
tion mechanisms to capture global correlations. Luo et al. [12] added stacked Trans-
former layers as intermediate bottleneck layers between the CNN encoder and decoder. 
Despite these advancements, Transformer-based methods face challenges with quad-
ratic complexity, limiting their application to small-scale features or requiring compro-
mises like single-scale convolutional projections [17]. These limitations hinder multi-
scale feature extraction, affecting the recovery of fine-grained anatomical structures. 

Recent efforts have expanded into multi-modal paradigms that integrate complemen-
tary information from auxiliary imaging modalities, particularly Magnetic Resonance 
Imaging (MRI) [18-24]. Conventional methods typically concatenate MRI and PET 
along the channel dimension, treating them as a unified input for end-to-end reconstruc-
tion [19]. Nevertheless, such strategies fail to explicitly model cross-modal interactions, 
overlooking the distinct representations encoded in each modality. Some multi-modal 
methods address this by using identical encoders for feature extraction, followed by 
simple fusion techniques (e.g., summation or multiplication) to merge the modality-
specific features [20]. While these methods work well in “equivalent multi-modal” sce-
narios, such as multi-parametric MRI segmentation, they are less effective in “asym-
metric multi-modal” settings like multi-modal PET-MRI reconstruction. In such cases, 
LPET should be prioritized as the primary modality due to its direct correlation with 
the target SPET image in both metabolic mapping and structural continuity, whereas 
MRI should act as a complementary modality to provide additional anatomical guid-
ance. Existing multi-modal PET reconstruction approaches, however, uniformly pro-
cess both modalities with identical encoder architectures and fusion rules, which, in 
such an asymmetric multi-modal setting, undermines the critical role of LPET while 
underutilizing the contextual cues provided by MRI. 

Recent advancements in dynamic convolutional kernels have shown strong potential 
in natural image classification by enabling context-aware feature extraction through 
adaptive weight modulation [25-29]. However, such techniques remain underexplored 
in medical imaging, let alone volumetric dense prediction tasks that require modeling 
asymmetric cross-modal interactions. In this paper, we propose MAK-GAN, a novel 
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GAN-based framework that integrates Multi-level Adaptive convolutional Kernels to 
explicitly differentiate feature extraction and interaction strategies between primary 
(LPET) and auxiliary (MRI) modalities in asymmetric multi-modal settings. Specifi-
cally, we hierarchically build Multi-Kernel Extraction (MKE) blocks for both PET and 
MRI branches. By constructing multi-kernel projection with varying kernel sizes, the 
MKE block enhances multi-scale modality-specific feature extraction while reducing 
computational overhead. Furthermore, to capture the primary-auxiliary relationship in 
PET-MRI interaction, we introduce the Adaptive-Kernel Interaction (AKI) block in the 
PET branch. The AKI block employs parallel self- and cross-attention modules to dy-
namically generate weights for intra- and inter-modal adaptive kernels, which are com-
bined with a balanced static kernel. This multi-level kernel ensures that the interacted 
feature preserves sufficient PET-specific metabolic characteristics while adaptively 
leveraging MRI-derived anatomical information. Finally, we employ two PET-centric 
optimization strategies to further reinforce the dominance of PET: a residual connection 
and an edge-aware consistency loss. Our contributions are as follows: 
1) We propose MAK-GAN, a novel framework that integrates multi-level adaptive 

kernels to differentiate feature extraction and interaction strategies between pri-
mary (LPET) and auxiliary (MRI) modalities, addressing the inherent asymmetry 
in multi-modal PET reconstruction tasks. 

2) Multi-Kernel Extraction (MKE) block is introduced for both PET and MRI 
branches, replacing linear projections with hierarchical multi-kernel convolutions, 
enabling efficient extraction of multi-scale modality-specific features. 

3) Adaptive-Kernel Interaction (AKI) block is asymmetrically incorporated into the 
PET branch, which integrates self- and cross-attention to preserve PET-specific 
characteristics while adaptively leveraging MRI’s anatomical information. 

4) We employ two PET-centric optimization strategies to prioritize PET during re-
construction. Experimental results demonstrate the superiority of our method. 

 
Fig. 1. Overview of our MAK-GAN model: (a) Two PET-centric optimization strategies, (b) 
MKE utilizes multi-kernel convolutional projections, and (c) AKI with self- and cross-attention 
mechanisms for adaptive kernel prediction. 
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2 Methodology 

As shown in Fig. 1, our MAK-GAN is based on a Generative Adversarial Network. 
The generator takes aligned LPET images (𝐼𝐼𝐿𝐿) and corresponding MRI (𝐼𝐼𝑀𝑀) to estimate 
high-quality PET images (𝐼𝐼𝐸𝐸), aiming to match the target SPET (𝐼𝐼𝑆𝑆). The discriminator 
distinguishes between authentic {𝐼𝐼𝑆𝑆, 𝐼𝐼𝐿𝐿} pairs and synthesized pairs {𝐼𝐼𝐸𝐸 , 𝐼𝐼𝐿𝐿}. The ob-
jective of the generator is to fool the discriminator, forming a min-max game. 

Notably, our MAK-GAN focuses on the encoder of the generator, incorporating two 
core blocks at each stage. The Multi-Kernel Extraction (MKE) block uses multi-kernel 
projections with varying kernel sizes to capture modality-specific features for both PET 
and MRI. These features are then fed into the Adaptive-Kernel Interaction (AKI) Block, 
asymmetrically embedded in the PET branch, where two adaptively generated convo-
lution kernels are balanced with a static kernel to form robust cross-modal interaction. 

2.1 Multi-Kernel Extraction Block 

Unlike conventional methods limited to small-scale transformer-based processing [12] 
or single-scale convolutional projections embedded in Transformers [13], we propose 
a Multi-Kernel Extraction (MKE) block for both MRI and PET branches. This block 
incorporates the Multi-Kernel Projection (MKP) strategy into self-attention mecha-
nism. By replacing linear projections with hierarchical multi-kernel convolutions, our 
MKP enables efficient multi-scale feature extraction with global contexts, enhancing 
modality-specific representation while optimizing computational efficiency. 

Specifically, in the 𝑖𝑖-th stage (𝑖𝑖 ∈ [1,3]), the MKE block takes modality-specific 
feature 𝐹𝐹𝑖𝑖 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖×𝐻𝐻𝑖𝑖×𝑊𝑊𝑖𝑖×𝐷𝐷𝑖𝑖  as input, where 𝐻𝐻𝑖𝑖 , 𝑊𝑊𝑖𝑖 , and 𝐷𝐷𝑖𝑖  represent height, width, 
and depth, and 𝐶𝐶𝑖𝑖 denotes the number of channels. For 𝑖𝑖 = 1, 𝐹𝐹𝑖𝑖 corresponds to the 
image 𝐼𝐼𝐿𝐿  or 𝐼𝐼𝑀𝑀. As shown in Fig.1 (b), the MKP strategies (𝑀𝑀𝑀𝑀𝑀𝑀(∙)) applies three 
convolutions {𝑘𝑘1(∙), 𝑘𝑘2(∙), 𝑘𝑘3(∙)} with varying kernel sizes of 3, 5, and 7 to derive 
multi-scale components. These components are concatenated along the channel dimen-
sion to form the query 𝑄𝑄, key 𝐾𝐾, and value 𝑉𝑉. The process is expressed as: 

𝑄𝑄,𝐾𝐾,𝑉𝑉 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐹𝐹𝑖𝑖),  where 𝑄𝑄 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘1(𝐹𝐹𝑖𝑖), 𝑘𝑘2(𝐹𝐹𝑖𝑖), 𝑘𝑘3(𝐹𝐹𝑖𝑖))),    (1) 
𝐾𝐾,𝑉𝑉 =  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐶𝐶𝐶𝐶𝐶𝐶(𝑘𝑘1(𝐹𝐹𝑖𝑖 , 𝑠𝑠 = 2), 𝑘𝑘2(𝐹𝐹𝑖𝑖 , 𝑠𝑠 = 2), 𝑘𝑘3(𝐹𝐹𝑖𝑖 , 𝑠𝑠 = 2))),       (2) 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(∙) represents the flattening operation and 𝐶𝐶𝐶𝐶𝐶𝐶(∙) denotes concatenation. 
Notably, different strides 𝑠𝑠 are employed for convolution operations to reduce com-
putational costs with minimal performance loss (𝑠𝑠 = 1 for 𝑄𝑄 , while 𝑠𝑠 = 2 for 𝐾𝐾 
and 𝑉𝑉). Additionally, paddings are adjusted to ensure consistent spatial sizes of the 
projection components. Once the projections are obtained, multi-head self-attention 
(MHSA) [11], denoted as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(∙), is applied to explore the long-range dependencies: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1 , … , ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ),                 (3) 
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑄𝑄 ∙ 𝐾𝐾/√𝑐𝑐) ∙ 𝑉𝑉,              (4) 

where each head ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗  computes the attention mechanism 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(∙). Here, 𝑗𝑗 ∈ [1, ℎ] 
with the number of heads ℎ set to 4. Subsequently, Layer-normalization (LN), a Feed-
forward Network (FFN), and a patch-merging operation are applied to obtain the output 
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of the MKE, denoted as 𝑂𝑂𝑖𝑖 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
,×𝐻𝐻𝑖𝑖

,×𝑊𝑊𝑖𝑖
,×𝐷𝐷𝑖𝑖

,
, where 𝐻𝐻𝑖𝑖

, × 𝑊𝑊𝑖𝑖
, × 𝐷𝐷𝑖𝑖

, = 𝐻𝐻𝑖𝑖
2

×  𝑊𝑊𝑖𝑖
2

× 𝐷𝐷𝑖𝑖
2

, and 
𝐶𝐶1

, = 64, which doubles at each stage. Notably, 𝐹𝐹𝑖𝑖 and 𝑂𝑂𝑖𝑖  are denoted as 𝐹𝐹𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 and 
𝐹𝐹𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 , and 𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃  and 𝑂𝑂𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀  for the PET and MRI branches, respectively. The above 
workflow in the MKE block preserves unique modality-specific characteristics before 
cross-modal interaction. 

2.2 Adaptive-Kernel Interaction Block 

Leveraging dynamic convolution techniques [25-27], which enable context-aware ad-
aptation through weight modulation, we propose the Adaptive-Kernel Interaction 
(AKI) block to model primary-auxiliary relationships in asymmetric multi-modal PET 
reconstruction. As shown in Fig. 1 (c), the AKI block is integrated into the PET branch, 
dynamically calibrating the influence of MRI anatomical information on PET feature 
refinement. It comprises three components: the Intra-modal Adaptive Kernel, Inter-
modal Adaptive Kernel, and Balanced Static Kernel, which together form a multi-level 
filtering mechanism to refine PET features across varying levels of abstraction. 
Intra-modal Adaptive Kernel (Intra-AK). The Intra-AK aims to enhance the PET 
features extracted by the MKE block, ensuring that the rich functional information in 
the PET data is fully preserved and effectively utilized during the interaction process. 
Specifically, given the PET feature 𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃  from the MKE block at the 𝑖𝑖-th stage, we first 
apply the multi-kernel projection and self-attention calculation, as in the MKE block, 
to derive the intermediate kernel-prior feature 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 . An adaptive kernel predictor 
(AKP) is then introduced, utilizing the 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 to dynamically generate the convolu-
tional kernel weight 𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 for Intra-AK. The process can be formulated as: 

𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
,×𝐻𝐻𝑖𝑖

,×𝑊𝑊𝑖𝑖
,×𝐷𝐷𝑖𝑖

,
= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄,𝐾𝐾,𝑉𝑉 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃)),            (5) 

𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼×𝐶𝐶𝑖𝑖

,×(𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎) = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼),                (6) 
where 𝑀𝑀𝑀𝑀𝑀𝑀(∙) denotes the multi-kernel projection in the MKE block, and 𝐴𝐴𝐴𝐴𝐴𝐴(∙) 
represents the adaptive kernel prediction, comprising multiple linear layers and a re-
shape operation. 𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝐶𝐶𝑖𝑖

, represent the output and input channels, respectively, 
and 𝑘𝑘𝑎𝑎 is a predefined kernel size for the adaptive kernels. 
Inter-modal Adaptive Kernel (Inter-AK). To fully leverage the auxiliary MRI mo-
dality and dynamically assess its influence on PET reconstruction, we propose the Inter-
AK. This adaptive kernel facilitates effective inter-modal interaction by integrating out-
puts from the MKE blocks of both PET and MRI branches, 𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃and 𝑂𝑂𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 . 

Multi-kernel projection 𝑀𝑀𝑀𝑀𝑀𝑀(∙) and cross-attention (denoted as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(∙)) are ap-
plied to generate the kernel-prior feature 𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, which is processed by the adaptive 
kernel predictor 𝐴𝐴𝐴𝐴𝐴𝐴(∙) to generate dynamic convolutional kernel weight 𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 with 
the output channel dimension 𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. The operations can be expressed as: 

𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
,×𝐻𝐻𝑖𝑖

,×𝑊𝑊𝑖𝑖
,×𝐷𝐷𝑖𝑖

,
= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃),𝐾𝐾,𝑉𝑉 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑂𝑂𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀)),   (7) 

𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼×𝐶𝐶𝑖𝑖

,×(𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎) = 𝐴𝐴𝐴𝐴𝐴𝐴(𝑓𝑓𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼).               (8) 
Note that, in the cross-attention calculation, 𝐾𝐾 and 𝑉𝑉 are derived from the MRI 

branch, while 𝑄𝑄 is derived from the PET branch to query the most relevant MRI-
derived anatomical information for PET reconstruction. 
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Balanced Static Kernel (BSK). To complement the two adaptive kernels, we also in-
troduce the BSK to mitigate over-reliance on dynamic convolutions by preserving cru-
cial basic information that might be significantly affected by the variability of adaptive 
weights, aiming to balance AKs by preventing their underlearning in early stages.  

Unlike intra- and inter-AKs that adaptively determine weights based on features,  
the “static” nature in BSK lies in the use of randomly initialized learnable weight 𝜃𝜃𝑖𝑖𝐵𝐵 ∈
𝑅𝑅𝐶𝐶𝑖𝑖

𝐵𝐵×𝐶𝐶𝑖𝑖
,×(𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎) in conventional convolution with the same kernel size 𝑘𝑘𝑎𝑎, where 

𝐶𝐶𝑖𝑖𝐵𝐵 denotes its output channel. The two AKs 𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, along with the BSK 
𝜃𝜃𝑖𝑖𝐵𝐵, are concatenated along the channel dimension to form a multi-level kernel 𝜃𝜃𝑖𝑖𝑀𝑀: 

 𝜃𝜃𝑖𝑖𝑀𝑀 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
,×𝐶𝐶𝑖𝑖

,×(𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎×𝑘𝑘𝑎𝑎) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,𝜃𝜃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ,𝜃𝜃𝑖𝑖𝐵𝐵),            (9) 
where 𝐶𝐶𝑖𝑖

, = 𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝐶𝐶𝑖𝑖𝐵𝐵𝐵𝐵. Notably, the optimal ratio {𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝐶𝐶𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝐶𝐶𝑖𝑖𝐵𝐵} is 
explored and set as {1: 1: 1}. This equal channel allocation enhances the coordination 
of the three components: PET-specific self-calibration (via Intra-AK), cross-modal in-
teraction (via Inter-AK), and stable feature preservation (via BSK). Finally, 𝜃𝜃𝑖𝑖𝑀𝑀 as-
signs three 3D convolutional kernels to filter each voxel in the initial PET feature 𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃:  

𝐹𝐹𝑖𝑖+1 ∈ 𝑅𝑅𝐶𝐶𝑖𝑖
,×𝐻𝐻𝑖𝑖

,×𝑊𝑊𝑖𝑖
,×𝐷𝐷𝑖𝑖

,
= 𝑂𝑂𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 ∗  𝜃𝜃𝑖𝑖𝑀𝑀 ,                    (10) 

where “∗” denotes the convolution operator, and the filtered 𝐹𝐹𝑖𝑖+1 is for the next stage. 

2.3 PET-centric Optimization Strategies 

As illustrated in Fig. 1(a), we introduce two PET-centric strategies into the GAN-based 
architecture during the adversarial training process, aiming to reinforce the dominance 
of the PET modality and achieve more robust reconstruction results. 
End-to-end Residual Connection. For the PET branch, in addition to the hierarchical 
encoder-decoder skip connections, we also establish an end-to-end residual connection 
(element-wise addition as “⊕”) directly from 𝐼𝐼𝐿𝐿  to the output 𝐼𝐼𝐸𝐸 . This design con-
structs a more robust LPET-to-SPET mapping by enabling the model to focus on learn-
ing residual features rather than reconstructing the output from scratch, thereby reduc-
ing the difficulty of prediction and accelerating convergence during training [13]. 
Edge-aware Consistency Loss. In adversarial training, the generator 𝐺𝐺 synthesizes 
𝐼𝐼𝐸𝐸 , while the discriminator 𝐷𝐷 evaluates both real and synthesized image pairs, i.e., {𝐼𝐼𝑆𝑆, 
𝐼𝐼𝐿𝐿} and {𝐼𝐼𝐸𝐸 , 𝐼𝐼𝐿𝐿}, to distinguish real from fake. Following prior work [6], the adversarial 
loss forms a min-max game, which can be defined as: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐸𝐸𝐼𝐼𝐿𝐿,𝐼𝐼𝑆𝑆[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝐼𝐼𝐿𝐿 , 𝐼𝐼𝑆𝑆)] + 𝐸𝐸𝐼𝐼𝐿𝐿[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐼𝐼𝐿𝐿 , 𝐼𝐼𝐸𝐸 = 𝐺𝐺(𝐼𝐼𝐿𝐿 , 𝐼𝐼𝑀𝑀)))].     (11) 
Additionally, we introduce an edge-aware consistency loss to preserve structural de-

tails in the reconstructed PET images, guiding the model to prioritize the recovery of 
PET-related contextual information. Specifically, we apply a Sobel layer [30] to the 
image pair {𝐼𝐼𝑆𝑆, 𝐼𝐼𝐸𝐸} and then compute the L1 loss between the extracted edges: 

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐸𝐸[‖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼𝑆𝑆) − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼𝐸𝐸)‖].                      (12) 
The final optimization objective can be represented as a combination of the adver-

sarial loss, the edge-aware consistency loss, and the common L1 loss on 𝐼𝐼𝑆𝑆 and 𝐼𝐼𝐸𝐸 : 
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛼𝛼 ∙ 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛽𝛽 ∙ 𝐸𝐸[‖𝐼𝐼𝑆𝑆 − 𝐼𝐼𝐸𝐸‖],                (13) 

where 𝛼𝛼 and 𝛽𝛽 are two hyper-parameters used to balance the three terms. 
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3 Experiments and Results 

Datasets. Our experiments utilize two in-house datasets. The Clinical dataset consists 
of PET brain images from 16 subjects (8 normal control (NC) and 8 with mild cognitive 
impairment (MCI)), acquired using a Siemens Biograph mMR PET-MR system. SPET 
scans were obtained within a 12-minute acquisition of tracer injection, while LPET 
simulations were captured in 3 minutes (25% standard dose). The Dynamic-PET dataset 
includes 18F-FDG PET/MR head images from another 16 subjects, acquired with a 
uPMR 790 PET/MR scanner with extreme low-dose protocols (4% standard dose). 
Implementation Details. Our model is implemented in PyTorch and trained on an 
RTX 3090. Based on trial studies, the L1 loss (with 𝛼𝛼) is slightly larger than the edge 
loss (with 𝛽𝛽) but much smaller than the adversarial loss. Following [12,20], optimal 
allocation of 𝛼𝛼 = 100 and 𝛽𝛽 = 50 effectively balances these loss terms. The learn-
ing rates for 𝐺𝐺 and 𝐷𝐷 are set to 2 × 10−4. The adaptive kernel size 𝑘𝑘𝑎𝑎 is set to 3. We 
employ the convolution blocks in U-Net [9] for the decoder. Both datasets undergo the 
same preprocessing: PET and MRI images are registered and resized to 128 × 128 ×
128, and each image is sliced into overlapping patches with a stride of 8, resulting in 
729 patches with a size of 64 for each patient. Using patches as basic input units, the 
final PET images are formed by stitching estimated patches together and averaging 
overlapping regions. During training, leave-one-out cross-validation (LOOCV) is ap-
plied for 16 times, each with one subject for validation and the others for training. 

Comparison Analysis. To demonstrate the superiority, we use SPET-corresponding 
LPET as the baseline and evaluate our proposed MAK-GAN against two single-modal 
methods (Ea-GAN [14], 3D CVT-GAN [13]) and three state-of-the-art multi-modal 
methods (M-Unet [9], LA-GAN [20], MTrans-GAN [21]). As shown in Table 1, our 

 
Fig. 2. Visualization results on Clinical dataset (left) and Dynamic-PET Dataset (right). The 

second row displays the error maps. The zoom-in areas are highlighted by red boxes. 

Table 1. Comparison with five SPET reconstruction methods in terms of PSNR, 
SSIM, NMSE, and GFLOPS. * marks PSNR improvements with statistical significance. 

Type Method Clinical Dynamic-PET GFLOPs PSNR SSIM NMSE PSNR SSIM NMSE 
- LPET *21.068 0.977 0.0550 *19.217 0.784 0.208 - 

single-
modal 

Ea-GAN [14] *24.867 0.984 0.0235 *22.735 0.830 0.130 70.38 
3D CVT-GAN [13] *25.084 0.987- 0.0218 *22.604 0.836 0.135 23.80 

Multi-
modal 

M-Unet [9] *24.442 0.984 *0.0261 *22.549 0.824 0.147 40.50 
LA-GAN [20] *24.807 0.984 *0.0239 *22.651 0.827 0.133 98.57 

MTrans-GAN [21] *25.106 0.987 0.0220 23.083 0.840 0.124 30.14 
MAK-GAN(ours) 25.311 0.988  0.0207 23.226 0.845 0.110 30.08 
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method outperforms all comparison methods across PSNR, SSIM, and NMSE. Specif-
ically, on the Clinical dataset, MAK-GAN achieves a 0.205 PSNR improvement over 
the second-best performer MTrans-GAN. On the more challenging Dynamic-PET with 
ultra-low dose, our method enhances PSNR by 0.143 dB and reduces NMSE by 0.014, 
while maintaining reasonable computational consumption. This is attributed to our 
multi-kernel projection, which enables symmetric multi-scale feature extraction for 
both modalities and facilitates effective asymmetric cross-modal interaction. A paired 
t-test shows p-values for PSNR consistently below 0.05 for both datasets in most cases, 
confirming statistically significant improvements. Fig. 2 shows the visualization re-
sults, where our MAK-GAN provides the closest reconstruction result to the real SPET 
images with the smallest error compared to other methods. 

Ablation studies. We conducted the following ablation experiments: (1) A GAN-based 
baseline using the standard U-Net encoder for PET and MRI branches, with simple 
convolution for fusion, and no edge-aware consistency loss or residual connection 
(Model-A). (2) Replacing the encoder blocks with MKE blocks for both MRI and PET 
branches (Model-B); (3) Adding AKI blocks to Model-B (Model-C); (4) Incorporating 
the residual connection (Model-D); (5) Introducing edge-aware loss to form our pro-
posed model (Model-E). As shown in Table 2, the comparison of Model-A and Model-
B reveals that the MKE block improves the performance through its multi-scale modal-
ity-specific feature extraction. Moving from Model-B to Model-C, the inclusion of the 
AKI block leads to better results, demonstrating its effectiveness in inter-modal inter-
action. Finally, the enhancements in the proposed Model-E demonstrate that the PET-
centric optimization strategies effectively reinforce the dominance of the PET modality. 

We also evaluate channel allocation strategies in MKE and AKI Blocks. As shown 
in Fig. 3, MKE performs optimally with a 2: 1: 1 ratio, where dominant 3×3×3 kernels 
(50%) capture fine-grained features while 5×5×5 and 7×7×7 kernels (25% for each) 
efficiently model long-range dependencies, balancing multi-scale extraction ability and 
computational cost. In AKI Block, an equal 1: 1: 1 allocation yields optimal results, 
enhancing the coordination of PET-specific self-calibration (via Intra-AK), PET-MRI 

Table 2. Quantitative comparison of ablation models on PSNR, SSIM and NMSE. 

Model Description Clinical Dynamic-PET 
PSNR SSIM NMSE PSNR SSIM NMSE 

A Baseline 24.084 0.980 0.0268 22.415 0.822 0.157 
B A + MKE Module 24.617  0.983 0.0240 22.569 0.830 0.140 
C B + AKI Module 24.934  0.986 0.0226 22.981 0.834 0.132 
D C + Residual Connection 25.169  0.987 0.0218 23.153 0.838 0.122 

E (Proposed) D + Edge-aware Loss 25.311 0.988 0.0207 23.226 0.845 0.110 
 

 
Fig. 3. PSNR under different channel ratios for MKE Block and AKI Block. 
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cross-modal interaction (via Inter-AK), and stable feature preservation (via BSK). We 
also explored the “no BSK” variant (ratio 1: 1: 0) and found it performs suboptimal, 
indicating that retaining BSK effectively mitigates over-reliance on AKs in early stages. 

4 Conclusion 

In this paper, we proposed a novel framework named MAK-GAN for asymmetric 
multi-modal PET reconstruction by leveraging the auxiliary MRI guidance. Specifi-
cally, we introduced a Multi-Kernel Extraction (MKE) block to efficiently extract mo-
dality-specific features at multiple scales, and an Adaptive Kernel Interaction (AKI) 
block to preserve PET-specific characteristics while adaptively incorporating MRI’s 
anatomical information for further refinement. Additionally, we incorporated PET-
centric optimization strategies to enhance reconstruction quality. 
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