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Abstract. The acquisition of 4D medical images, which are crucial for
monitoring disease progression, poses significant challenges due to the ex-
pensive cost and the imaging mechanism constraints. Existing solutions
attempt to interpolate the volumes between the acquired volumes with
linearly scaling the initial bidirectional deformation between two distant
phases like end-systole and end-diastole, to generate detailed 4D image.
However, the simple linear motion assumption fails to accurately model
the anisotropic deformation induced by respiration and heartbeat. In this
paper, we propose a temporal modulated multi-scale deformation fusion
framework for 4D medical image interpolation via knowledge distilla-
tion, to directly generate the bidirectional deformation and volume at
any intermediate time without the sub-optimal linear motion assump-
tion. Guided by the teacher model with extensive priors, the student
model, modulated by surrogate timestamps, learns to approximate the
deformation modeling ability of teacher without any need for interme-
diate volumes. Particularly, a multi-scale deformation fusion decoder is
proposed including the temporal modulated deformation feature gener-
ator and the deformation fusion module. The former generates modu-
lation parameters with timestamps for temporal-aware transformation
and then models the bidirectional deformation in a coarse-to-fine man-
ner. While the latter adaptively fuses deformation features at different
scales to improve the accuracy of predicted deformation. Compared with
nine state-of-the-art methods, the proposed method achieves superior
performance on two public datasets, fully demonstrating its effectiveness
and generalization.
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1 Introduction

Four-dimensional (4D) medical image, crucial for disease monitoring and clinical
diagnostics [18,14,6], contains both spatial anatomical and temporal dynamic
information. However, the acquisition is limited by the extensive costs and long
examination time. The scanning time of 4D MRI lasts up to 60 minutes [23], while
the exposure risk of radiation significantly increases over time during CT imaging
[24]. Moreover, 4D image may occur quality degradation due to the movement
and respiration of patients during scanning [3]. Achieving the optimal balance
between image quality and acquisition efficiency poses significant challenges.

As a post-processing technique, volume interpolation enables the synthesis
of intermediate volumes from acquired 4D images, thereby enhancing temporal
resolution and reducing acquisition constraints. The similar video frame interpo-
lation (VFI) has been adopted in many scenarios like video compression [27,12],
which requires massive training data and focuses on 2D+t scenes [7]. However,
4D medical images exhibit significantly lower temporal sampling rates and more
complex deformation patterns compared to videos. Besides, the transition from
2D+t to 3D+t substantially elevates computational burdens [21], hindering the
direct application of VFI in 4D medical images.

Existing volume interpolation methods establish the deformation between
adjacent volumes based on time-consuming iterative-optimized registration, and
approximate the intermediate volume by linear scaling [28,15,20]. Kim et al.
[16] proposed a diffusion deformable model to synthesize the intermediate de-
formation by linearly scaling the latent code generated by the diffusion module.
Guo et al. [8] developed a dual-network SVIN that predicted the bidirectional
deformation of the intermediate volume by linearly scaling the initial deforma-
tion between end-systole and end-diastole. And Kim et al. [17] introduced an
unsupervised strategy based on cycle consistency with the similar framework.
However, these methods fail to consider the impact of large difference between
two endpoint phases. Moreover, the linear motion assumption hinders accurate
capture of complex physiological motion, ultimately leading to spatial distortion
[8]. Although Li et al. [19] used implicit neural representation to model patient
anatomic motion without linear scaling, the performance and generalization was
constrained by the case-specific optimization and complex hyper-parameters tun-
ing.

We propose a temporal modulated multi-scale deformation fusion volume in-
terpolation framework via knowledge distillation to synthesize intermediate vol-
umes. The teacher model, comprising a feature extraction encoder, multi-scale
deformation fusion decoder (MSDF), and refinement network, accurately pre-
dicts bidirectional deformation using real volumes at intermediate and two end-
points as priors. The MSDF integrates deformation feature generator (DFGen)
and deformation fusion module (DFM) across multiple scales. DFGen captures
both global and local deformation in a coarse-to-fine manner, while DFM adap-
tively fuses multi-scale features to directly predict the intermediate deformation,
eliminating the sub-optimal linear scaling operation. The DFGen in student is
time-modulated to use surrogate timestamps to emulate the teacher’s deforma-
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tion features, directly predicting the intermediate deformation without the need
for real intermediate volumes. To accurately model the latent deformation fea-
tures, we developed a distillation loss that facilitates knowledge transfer from
teacher with richer priors to student. The contributions are as follows:

1. We propose a novel temporal modulated multi-scale deformation fusion vol-
ume interpolation framework to directly formulate the deformation of in-
termediate volumes at arbitrary time in the student model via knowledge
distillation with using surrogate timestamps and the guidance of the teacher
model.

2. We propose a multi-scale deformation fusion decoder to simultaneously cap-
ture global and local deformation, mitigating the impact of large difference
between two endpoint phases.

3. Extensive experiments on two public datasets compared with nine state-of-
the-art methods verify the effectiveness of the proposed method.

2 Method

2.1 Overview

The volumes at two endpoint phases and intermediate time are represented as
I0, I1, and It, respectively. Existing volume interpolation solutions synthesize It
based on its bidirectional deformation with linearly scaling the initial deforma-
tion between I0 and I1. It has been demonstrated that explicitly modeling the
high-order complex motion solely based on two endpoint phases is challenging
[9]. The proposed temporal modulated multi-scale deformation fusion volume in-
terpolation framework is illustrated in Fig.1(a). The teacher model takes I0, It,
and I1 as input priors to explore the latent deformation features and accurately
predict the bidirectional deformation of It at different resolutions and the syn-
thesized volume ĨTch

t . The architecture of student is similar to that of teacher.
While the student model only takes I0, I1 as input volumes and introduces the
relevant timestamp t as surrogates to replace It. The student performs temporal-
aware transformation on the deformation features at multi resolutions to emulate
the intermediate features of teacher with real It as input, eventually generating
the bidirectional deformation and synthesizing the intermediate volume ĨStu

t .
The teacher effectively transfers deformation clues learned from rich priors to
student via knowledge distillation, enhancing the deformation modeling ability
of student with limited inputs under the guidance of surrogate timestamps.

2.2 Teacher Model

The teacher model includes feature extraction encoder, multi-scale deformation
fusion decoder (MSDF), and refinement network. The feature extraction encoder
takes 4 convolution units to extract multi-scale features {FTchi

0 }, {FTchi
t }, and

{FTchi
1 }, i = 1, . . . , 4 from I0, It, and I1. Each unit has 2 3D Conv Blocks,

comprising a 3D Conv layer, an InstanceNorm layer, and LeakyReLU function.
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Fig. 1. (a). The proposed knowledge distillation-based volume interpolation frame-
work; (b). The architecture of MSDF in student. The MSDF in teacher is similar
without the surrogate timestamps; (c). The architecture of DFGen. The time modula-
tion part only exists in student; (d). The architecture of DFM; Intermediate variables
of student are taken as examples for easily understanding in (b-d).

The MSDF includes the deformation feature generator (DFGen) and defor-
mation fusion module (DFM) at different scales (Fig.1(b)). When i=1, FTch1

0 ,
FTch1

t , and FTch1
1 are concatenated and sent into DFGen to model the defor-

mation feature FTch1

def and bidirectional velocity field VTch1
0t and VTch1

01t . When

i>1, FTch(i−1)

def output by preceding DFGen are upsampled and fused with other
input of current DFGen to generate FTchi

def , achieving progressive coarse-to-fine
deformation (Fig.1(c)). In the teacher model without time modulation:F̂Tchi

def =

FTchi

def . The velocity fields from all i current scales are unified and stacked in
DFM to be convolved into i weight maps to re-weight the contribution of each
velocity vector in the corresponding velocity field. The weighted summation is
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integrated to generate the deformation field ΦTchi
0t and ΦTchi

1t via scaling and
squaring [5]. Similarly, {ΦTchi

0t } and {ΦTchi
1t } at different scales are obtained.

I0, {FTchi
0 }, and I1, {FTchi

1 } are respectively warped by the correspond-
ing fields to obtain the initial deformed volumes {ITchi

0t }, {ITchi
1t } and features

{F̃Tchi
0t }, {F̃Tchi

1t }, which are taken as the input of refinement network to even-
tually generate the synthesized volume ĨTch

t . An encoder-decoder architecture is
adopted in the refinement network with 8 3D convolution units. Each deformed
feature is fed into individual encoder layers and concatenated channel-wise.

2.3 Student Model

The architecture of student is similar to that of teacher, differing in: (1). The
input It in teacher is replaced with the weighted summation of I0 and I1: Ib =
t × I0 + (1 − t) × I1. (2). The surrogate timestamp and time modulation are
added in DFGen. The high-dimensional embedding of timestamp is obtained
with a sinusoidal time encoding function, which is expanded to the size of current
feature to generate the modulation parameters αi

t and βi
t after 2 Linear Blocks

and 2 3D Conv Blocks. And FTchi

def is modulated as: F̂Stui

def = αt × FStui

def + βt.
Each Linear Block contains a linear layer and LeakyReLU activation function.

2.4 Model Objectives

The overall objective function is as follows:

L = Lalign + Lrecon + λdLdistill (1)

The mean square error (MSE) between the synthesized volume ĨStu
t and It is

calculated as the reconstruction loss Lrecon. The alignment loss Lalign includes
the similarity term Lsim and regularization term Lreg. Lsim calculates MSE
between the deformed volume after MSDF and target, while Lreg use a diffusion
regularizer [1] to keep the deformation smooth and continuous:

Lalign =
∑
k=0,1

4∑
i=1

2i−4 ×
(
Lsim

(
It, I

Stui

kt

)
+ λrLreg(Φ

Stui

kt )
)

(2)

The teacher model is initially optimized to learn precise nonlinear deformation
with rich priors. Then the distillation loss Ldistill is employed to guide student
in extracting potentially valuable information with limited prior knowledge:

Ldistill = Lsim

(
ĨStu
t , ĨTch

t

)
+

4∑
i=1

(
Lsim

(
IStui
0t , ITchi

0t

)
+ Lsim

(
IStui
1t , ITchi

1t

))
(3)
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3 Experiments

3.1 Experiments Settings

Datasets. Two public 4D image datasets ACDC [2] and 4D_Lung [10] are used
to verify the performance of our method. We follow the data partitioning and
prepossessing in [17]. The ACDC dataset consists of 100 4D cardiac MRI images
where 90, 10 images are selected for training and test, respectively. While 68, 14
images are for training and test in 4D_Lung which contains 82 4D CT images.
Metrics. To quantitatively evaluate the performance, we introduce various met-
rics: peak signal-to-noise ratio (PSNR), normalized cross-correlation coefficient
(NCC), structural similarity (SSIM), and normalized mean square error (NMSE).
Compared Methods. We conduct extensive comparisons with 9 state-of-the-
art methods: SVIN [8], MPVF [25], VoxelMorph (VM) [1], TransMorph (TM)
[4], Fourier-Net+ [11], R2Net [13], DDM [16], IDIR [26], and UVI-Net [17].
Implementation Details. The proposed method is implemented with PyTorch
[22] using an NVIDIA RTX 4090 GPU. We employ the Adam optimizer with a
learning rate 10−4 for 200 epochs, and a batch size of 1. λr and λd are set to 0.1.
The training has two stages: we first train the teacher model via the combination
of Lrecon and Lalign; and then we train the student model via Eq. 1.

3.2 Comparisons

The interpolation performance of each method on two datasets is presented in
Table 1. The proposed method significantly outperforms others across all metrics.
From multiple quantitative perspectives including voxel-wise similarity, correla-
tion, structural similarity, and reconstruction error, the synthesized volume of
the proposed method is the closest to the ground truth volume. The visual-

Table 1. Quantitative comparison of interpolation results. The best results and the
second best results in each column are bolded and underlined respectively.

ACDC 4D_LungMethod PSNR NCC SSIM NMSE PSNR NCC SSIM NMSE
SVIN 32.51 0.559 0.972 2.930 30.99 0.312 0.973 0.852
MPVF 33.15 0.561 0.971 2.435 31.18 0.310 0.972 0.761

VM 31.02 0.555 0.966 4.254 32.29 0.316 0.977 0.641
TM 30.45 0.547 0.958 4.826 30.92 0.313 0.973 0.786

Fourier-Net+ 29.98 0.544 0.957 5.503 30.26 0.308 0.971 0.959
R2Net 28.59 0.509 0.930 7.281 29.34 0.294 0.962 1.061
DDM 29.71 0.541 0.956 5.007 30.37 0.308 0.971 0.905
IDIR 31.56 0.557 0.968 3.806 32.91 0.321 0.980 0.586

UVI-Net 33.59 0.565 0.978 2.384 34.00 0.320 0.980 0.552
ours 35.21 0.579 0.982 1.869 35.47 0.325 0.984 0.386
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Fig. 2. Visualization of synthesized volumes and error maps on ACDC and 4D_Lung.

ization of synthesized volumes and the relevant difference maps on ACDC and
4D_Lung are shown in Fig.2. The volumes generated by our method are visu-
ally more realistic and reliable, with more accurate edges of anatomical regions
such as the heart and pulmonary vessels. Fig.3 presents the prediction of 4D im-
age series over time. Compared with the linear scaling based VM, the proposed
method more effectively captures fine-grained details.

3.3 Ablations

We conduct ablations on ACDC. Table 2 presents the influence on interpolation
of each modules, where TM_DFGen represents the temporal modulated DF-
Gen in student, Ref. represents the refinement network and MsDFM represents
the usage of DFM at multi scales. Without any modules incorporated, the stu-
dent model generates intermediate deformation through linear scaling with solely
taking I0 and I1 as inputs, whose performance is limited. The utilize of DFM
significantly enhances performance, benefiting from the multi-scale deformation
fusion. Incorporating the time modulation in DFGen of student effectively al-
leviates the input prior deficiency, enabling direct prediction of bidirectional
deformation with surrogate timestamps instead of linear scaling. And the refine-
ment network further improves detail features in synthesized volumes, increasing
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Fig. 3. Qualitative results on the prediction of 4D image series over time on ACDC.

the similarity to ground truth. Expanding the DFM from only used at final scale
to all scales simultaneously improve the accuracy of bidirectional deformation at
different scales, further enhancing the authenticity of the synthesized volumes.

Table 2. The influence of each modules on interpolation performance.

DFM TM_DFGen Ref. MsDFM PSNR NCC SSIM NMSE
30.85 0.553 0.964 4.451

✓ 31.73 0.562 0.967 3.658
✓ ✓ 32.52 0.569 0.972 2.728
✓ ✓ ✓ 33.92 0.576 0.978 2.197
✓ ✓ ✓ ✓ 35.21 0.579 0.982 1.869

Table 3. The influence of each loss term on interpolation performance.

Lrecon Lalign Ldistill PSNR NCC SSIM NMSE
✓ 32.08 0.565 0.963 2.735
✓ ✓ 33.14 0.570 0.973 2.298
✓ ✓ ✓ 35.21 0.579 0.982 1.869

Table 3 shows the impact of each component in the overall objective function
on interpolation. Compared to directly training student, Ldistill provides addi-
tional constraints from teacher, reducing the difficulty of directly modeling the
relationship between surrogate timestamp and the bidirectional deformation.
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4 Conclusion

We propose a knowledge distillation-based volume interpolation framework with
temporal modulated multi-scale deformation fusion to directly predict bidirec-
tional deformation and corresponding volumes at arbitrary time. The teacher
model accurately models multi-scale bidirectional deformation features with tak-
ing two endpoint phase and intermediate volumes as priors. The student model
innovatively introduces time modulation and surrogate timestamps during multi-
scale deformation fusion to achieve time-aware transformation of deformation
features, enabling deformation modeling and volume synthesis without the need
for real intermediate volume. A distillation loss is developed to facilitate knowl-
edge transfer from teacher with richer prior knowledge to student. Experimental
results demonstrate that our method outperforms existing volume interpolation
approaches, showing promising potential for clinical applications.
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