
BiMSRec: A Progressive Image Reconstruction
Framework for Medical Image Fusion Guided by

Multi-Scale Deformation Fields

Nuoer Long1, Kaiwen Yang1, Xinyu Xie1, Zitong Yu2, Tao Tan1

and Yue Sun1(B)

1 Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
yuesun@mpu.edu.mo

2 School of Computing and Information Technology, Great Bay University,
Dongguan, China

Abstract. Traditional multi-modal medical image fusion methods typ-
ically employ a hierarchical feature fusion strategy. However, due to in-
consistencies among features at different scales, these approaches often
introduce unanticipated deformations during the fusion process. Such
deformations accumulate through successive registration steps and ulti-
mately result in oscillatory distortions at the fine-detail level. To address
this challenge, we propose a progressive image reconstruction framework
that is guided by multi-scale deformation fields. Specifically, the input
images are first mapped into feature spaces at multiple scales and a defor-
mation field prediction strategy is employed to generate multiple defor-
mation fields that capture both local and global transformation trends si-
multaneously. Notably, the deformation fields generated across all scales
possess the intrinsic capability to directly perform image registration.
This capability eliminates the need for sequential propagation of regis-
tration outcomes and effectively mitigates cumulative deformation issues.
In the image reconstruction phase, we adopt a progressive coarse-to-fine
strategy, leveraging multi-scale deformation fields to achieve accurate
structure restoration and fusion. Extensive experimental results demon-
strate that the proposed method significantly enhances image alignment
accuracy and fusion quality across multiple datasets, offering an efficient
and robust solution for multi-modal medical image processing.
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1 Introduction

Multi-modal medical image fusion plays a crucial role in clinical diagnosis, as
complementary information from different imaging techniques helps to compre-
hensively characterize lesion features. Each modality’s unique advantages pro-
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vide more comprehensive and accurate image data[23, 22]. In multi-modal fu-
sion, key information needs to be retained according to the characteristics of
each modality. For instance, Computed Tomography (CT) provides high-contrast
bone information, while Magnetic Resonance Imaging (MRI) excels in soft tissue
imaging, so CT should retain bone structures and MRI should preserve soft tis-
sue details. In PET-MRI fusion, Positron Emision Tomograph (PET) provides
metabolic information and MRI offers anatomical details, so metabolic areas
from PET and anatomical features from MRI should be preserved. In SPECT-
MRI fusion, (Single-Photon Emission Computed Tomography(SPECT) offers
blood flow and functional information, while MRI provides structural details.
The functional regions in SPECT and structural features in MRI should be re-
tained. For other multi-modal image fusions, the information to retain must also
be determined based on their specific characteristics to ensure the fused image’s
effectiveness and reliability in diagnosis[4, 3].

In actual clinical practice, due to different acquisition devices with varying
imaging principles and parameters, as well as unavoidable subtle movements,
breathing, and heartbeat of patients during the examination process, positional
deviations are often introduced. Therefore, precise registration must be per-
formed before image fusion. Medical image registration includes both tradi-
tional optimization-based methods and deep learning-based automatic registra-
tion schemes, aiming to achieve optimal spatial alignment through deformation
or rigid transformation. For a long time, registration and fusion have been re-
garded as two relatively independent research directions. Researchers often focus
on improving registration accuracy[1, 14] while neglecting the impact of regis-
tration errors on subsequent fusion quality. To address the above issue, some
studies have proposed a two-stage strategy [20], where multi-modal images are
first spatially aligned using a registration algorithm, followed by the fusion pro-
cess. While this approach facilitates the utilization of state-of-the-art registration
techniques and allows independent optimization of the fusion network, registra-
tion errors often propagate through subsequent processing stages. Additionally,
the separate training objectives of the two stages may not be fully compati-
ble, potentially leading to increased computational complexity and a decline in
overall performance.

Meanwhile, multi-modal medical image fusion methods often rely on fea-
ture fusion strategies in RGB or YCrCb color spaces[8, 10], as these spaces can
retain luminance and chrominance information, aiding in the alignment and
enhancement of images from different modalities. However, these methods are
typically limited to pixel intensity-based weighting, transformation, or filtering
operations, making it difficult to capture complex local and global deforma-
tions effectively[6]. In particular, when non-linear deformations exist in different
modalities, color space-based fusion strategies may lead to the accumulation of
registration errors.

Currently, most fusion methods fail to fully exploit the inherent similarity
between multi-modal images in feature representation. The structural or texture
features originally hidden in the images could have provided strong guidance
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for spatial deformation. Based on this, this study designed a multi-modal and
multi-scale deformation field registration network (M2FReg), which uses the
implicit similar structure and texture information between images to directly
predict the deformation field independently at each scale, ensuring that each
scale can complete the registration task independently, effectively avoiding the
cumulative error caused by dependence on previous results. Finally, through
the Progressive Multi-Scale Flow-Guided Reconstruction Network (PFRecon)
specially designed for multi-scale deformation field. This network adopts a top-
down reconstruction strategy, first capturing the basic outline of the overall
structure of the image on a global scale, and then gradually introducing medium-
scale and local detailed features. Through the fusion of multi-scale deformation
fields, the method achieves detailed structural restoration and high-quality fusion
of multi-modal images.

In summary, the main contributions of this research are: 1. Traditional multi-
modal medical image fusion methods rely on RGB or YCrCb color spaces for
feature fusion, but they have limitations in capturing local and global defor-
mations. This paper introduces a deformation field-based guidance mechanism,
providing richer motion and deformation features to enhance the structural ref-
erence for image registration. 2. Progressive feature fusion methods often rely
on continuously generated deformation fields, which can lead to the gradual
accumulation of errors. Our method employs a direct multi-scale deformation
field estimation strategy, where the deformation field at each scale indepen-
dently performs registration. This approach prevents error accumulation from
coarse-to-fine propagation and substantially enhances registration accuracy and
robustness. 3. To process the multi-scale deformation field inputs, we designed
a progressive global-to-local reconstruction strategy that effectively integrates
deformation information at each scale, thereby enhancing both image alignment
accuracy and fusion quality. 4. Our method exhibits excellent performance under
different registration states, proving its wide applicability and practical value in
multi-modal medical image processing.

2 Methodology

2.1 General framework

As shown in Fig 1, the framework includes three main components: a feature
extraction network, M2FReg network, and PFRecon network. First, the fea-
ture extraction network extracts rich features to enhance the model’s ability
to understand multi-modal data. The M2FReg network estimates bidirectional
multi-scale deformation fields, operating in both global-to-local and local-to-
global directions, enabling independent image registration at each scale. Finally,
the PFRecon network performs progressive image reconstruction from coarse to
fine by integrating all multi-scale deformation fields.
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Fig. 1: Taking CT-MRI data as an example, the figure shows the overall frame-
work of the proposed method.

2.2 Feature Extraction Network

Restormer[26] has shown excellent performance in image feature extraction tasks,
so in the feature extraction network, we use the Restormer module to extract
deep semantic features from unaligned input images. Since BiMSRec does not
fully rely on the characteristics of color space, we only obtain part of the color
space information. Specifically, during data preprocessing, the input grayscale or
RGB image is transformed into the YCrCb color space, and only the luminance
channel (Y) is retained to obtain single-channel data. Given the input images
IA and IB(I ∈ R1×H×W ), the feature extraction network processes them to
generate feature maps FA and FB(F ∈ RC×H×W ), where the number of feature
channels C is set to 16.

2.3 M2FReg Network

In the MFReg network, we employ a bidirectional deformation field estima-
tion framework to jointly perform registration and fusion of multi-scale fea-
tures, producing high-quality dense deformation fields. The network maps FA

and FB to FAi
and FBi

through Multi-Scale Patch Embedding (MSPE), where
Fi ∈ RCi×Hi×Wi(i = 1, ..., 5), with the number of channels Ci and resolution
(Hi,Wi) decreasing progressively. This hierarchical design allows high-level fea-
tures to capture richer semantic information while preserving fine-grained details
in the low-level features, enhancing the accuracy and robustness of the registra-
tion process.

The core component of M2FReg is the feature registration block (RegBlk).
This structure adopts a differential cross-attention mechanism to provide strong
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support for image registration by mining the intrinsic similarities in multi-modal
feature images. The bidirectional cross-attention calculation is as follows:

F ′
A = Softmax(QAK

T
B/

√
d)VB , F

′
B = Softmax(QBK

T
A/

√
d)VA. (1)

Among them, Q, K, and V are obtained by linear transformation of FAi and
FBi . Then, the cross-attention features F ′

Ai
and F ′

Bi
are fused to construct rich

matching information. Finally, the prediction network flowi is obtained through
the residual block and activation function.

The overall network employs a bidirectional computation mechanism. As
illustrated in Fig 1, the top-down pathway estimates a forward deformation
field. Local feature layers are progressively integrated into global feature layers
through Down Fusion (DF ), ensuring robust estimation of global deformation
fields while maintaining consistency under large transformations. Conversely, the
bottom-up pathway estimates a backward deformation field. Global feature lay-
ers are progressively integrated into local feature layers through Up Fusion (UF )
to enhance fine-grained detail restoration, effectively recovering high-frequency
information lost during large-patch processing.

2.4 PFRecon Network

Building upon the multi-modal multi-scale deformation field registration net-
work, we propose a progressive multi-scale flow-guided reconstruction network
(PFRecon) that performs coarse-to-fine image reconstruction by fully utilizing
the bidirectionally predicted deformation fields.

The network input consists of five sets of multi-scale deformation fields es-
timated by M2FReg. Given that M2FReg employs a bidirectional information
propagation mechanism, we define the scale index i to range from 1 to 5. The
deformation field predictions at each scale are denoted as flowi and flow11−i,
where flow ∈ R2×Hi×Wi , with the resolution (Hi,Wi) progressively decreasing.
The PFRecon network initiates reconstruction using the coarsest-scale defor-
mation field and progressively incorporates finer-scale deformation information,
hierarchically refining the output until reaching the highest resolution. Within
the Hierarchical Deformation Field Alignment (HDFA) module, bidirectionally
estimated deformation fields are employed to align images and fuse their feature
representations, ensuring robust and consistent reconstruction:

F re
Bi

= concat(reg(FBi , f lowi), reg(FBi , f low11−i)). (2)

Among them, F re
Bi

∈ R2C×Hi×Wi represents the registration feature at the
current scale. reg stands for Non-rigid Registration, which can form an image
for deformation field guidance registration. Next, we fuse this feature with the
image feature FAi

. The specific calculation is as follows:

F fuse
i = concat(F re

Bi
, FAi , F

pre
i ), (3)
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Fig. 2: Visual Comparison of Fusion Results: The left side shows the experimental
results of registration-based fusion, and the right side shows the experimental
results of joint registration and fusion.

where F pre
i represents the fused features of the previous layer. This hierarchi-

cal feature propagation method can complete the initial alignment at the low-
resolution stage and gradually supplement the detailed information at the high-
resolution stage. It is worth noting that each predicted deformation field has
independent registration capability. The PFRecon network progressively opti-
mizes these fields, producing smoother and more accurate results.

2.5 Loss Settings

In this study, the loss function design mainly includes registration loss and fu-
sion loss. Registration loss evaluates the quality of the deformation field and
the accuracy of image alignment, ensuring correct registration of multi-modal
images. Fusion loss assesses the overall quality of the fused image, ensuring that
the output retains critical information from the original images while minimizing
detail loss and avoiding the introduction of artifacts.

Inspired by traditional image fusion loss functions, we use SSIM loss[27], L1
loss[15], and gradient loss[13] to ensure the fused image maintains structural
integrity, fine details, and smooth transitions.

For the registration task, we adopt color-space-based SSIM loss and L1 loss to
regulate image alignment, ensuring accurate registration across different modal-
ities. Additionally, given that our network relies on deformation field guidance,
we design an additional set of deformation field losses, which are computed as
follows:

Lflowi
= lossssim(flowi, f lowGT ) + lossL1(flowi, f lowGT ), (4)

where flowGT is the deformation field of the registered image IOB after random
elastic affine transformation (REAT )[2]. Compared with the traditional image
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Table 1: Qualitative Analysis of Registration-Based Fusion Methods.
CT-MRI PET-MRI SPECT-MRI

Model SD QAB/FVIF SSIM SD QAB/FVIF SSIM SD QAB/FVIF SSIM

CSMCA[9] 97.53 0.59 0.31 0.94 95.68 0.50 0.53 0.93 94.23 0.69 0.44 0.93

IFT[19] 89.78 0.45 0.37 0.89 102.76 0.52 0.49 0.91 88.47 0.64 0.51 0.92

SwinFusion[11] 98.76 0.63 0.49 0.95 100.31 0.74 0.55 0.92 98.77 0.68 0.64 0.96
U2Fusion[23] 90.22 0.28 0.31 0.83 92.29 0.50 0.48 0.89 92.77 0.53 0.54 0.94

BiMSRec 103.94 0.68 0.57 0.92 106.58 0.78 0.53 0.90 105.92 0.68 0.80 0.92

Table 2: Qualitative Analysis of Joint Registration and Fusion Methods.
CT-MRI PET-MRI SPECT-MRI

Model SD QAB/FVIF SSIM SD QAB/FVIF SSIM SD QAB/FVIF SSIM

SuperFusion[16] 87.83 0.27 0.24 0.46 92.55 0.49 0.26 0.67 84.61 0.51 0.30 0.47

BASFusion[7] 90.24 0.42 0.27 0.66 97.63 0.78 0.42 0.52 84.61 0.66 0.42 0.56

IMFusion[21] 97.27 0.28 0.19 0.62 90.27 0.62 0.30 0.55 98.17 0.52 0.31 0.54

MURF[24] 82.60 0.31 0.20 0.61 92.24 0.51 0.24 0.43 89.23 0.49 0.26 0.42

BiMSRec 93.71 0.49 0.29 0.70 100.76 0.60 0.46 0.51 97.46 0.64 0.47 0.59

fusion task based on RGB or YCrCb color space, our method can additionally
compare the predicted deformation field with the ground truth deformation field.

3 Experiments

3.1 Experimental Setup

This study utilizes multi-modal medical imaging data from the Harvard Medical
Dataset, which comprises three sub-datasets: CT-MRI, PET-MRI, and SPECT-
MRI. To ensure a consistent data distribution during training and testing, the
experimental data division follows established methodologies, such as KPSFu-
sion[17]. In this study, MRI is designated as the reference modality, while the
other modalities (CT/PET/SPECT) undergo random elastic and affine trans-
formations to simulate real-world deformations.

The experimental evaluation adopts two methods. On the one hand, multiple
indicators are calculated to measure the quality of the fused image, and on
the other hand, the performance of different methods is directly compared on
three datasets. The indicators we choose include standard deviation (SD)[25],
gradient-based quality index (QAB/F ), fidelity to visual information (V IF )[5],
and structural similarity index (SSIM)[12].

The experiment was implemented in PyTorch. The Adam[18] optimizer was
used in the training process. The initial learning rate was set to 5e-5, the batch
size was 8, and the number of training rounds was 100. All experiments were
run on the NVIDIA A40 GPU.

http://www.med.harvard.edu/aanlib/
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3.2 Comparison With the State-of-the-art Methods

In this section, we conduct experiments on three representative multi-modal
medical image fusion tasks and compare our method with state-of-the-art ap-
proaches. Qualitative results are shown in Fig 2. Our method excels in preserv-
ing multi-modal structural information, enhancing detail clarity, and improving
contrast. Unlike conventional methods relying on RGB and YCrCb color spaces,
our approach estimates the registered color distribution by computing offsets
based on predicted deformation fields, enabling BiMSRec to achieve robust per-
formance in RGB modality fusion with accurate registration and high-quality
outcomes.

Table 1 and Table 2 show the quantitative comparison results across three
datasets based on four evaluation metrics. Our method achieves the highest
scores on multiple metrics, demonstrating its effectiveness. Notably, it excels
in SD, indicating superior contrast preservation and edge sharpness in multi-
modal fusion. The result of visual comparison aligns with the qualitative analysis,
further validating BiMSRec’s robustness in enhancing fusion quality.

3.3 Ablation experiment

To validate M2FReg, we designed forward and reverse deformation field regis-
tration networks, each retaining a single direction of flow. Additionally, to assess
PFRecon’s contribution, we designed a reconstruction network guided by single-
scale deformation fields. The ablation study includes both ablation results in
Table 3 and visual ablation in Fig 3.

Fig. 3: Visual ablation

Table 3: Ablation results

SD QAB/F VIF SSIM

BiMSRec 103.94 0.68 0.57 0.92

forward only 82.41 0.47 0.32 0.76

reverse only 98.26 0.52 0.49 0.88

single-scale 82.35 0.41 0.34 0.72

In comparison, the unidirectional deformation field registration network re-
sults in degraded evaluation metrics, demonstrating that bidirectional registra-
tion preserves critical details like texture and contrast. Furthermore, single-scale
deformation field reconstruction significantly compromises registration perfor-
mance, underscoring PFRecon’s ability to effectively integrate multi-scale defor-
mation fields - a cornerstone of the BiMSRec framework.

4 Conclusion

This study presents a novel framework for multi-modal, multi-scale deforma-
tion field-based registration and fusion. Leveraging the multi-scale deformation
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fields estimated by M2FReg, the framework achieves precise cross-modal feature
alignment. Meanwhile, PFRecon employs a progressive reconstruction strategy
to hierarchically integrate multi-scale deformation features, refining structural
details and enabling high-fidelity image fusion. The proposed approach demon-
strates strong adaptability across various registration scenarios, underscoring its
effectiveness in multi-modal medical image fusion and its potential applicability
in clinical settings that demand precise registration and seamless multi-modal
data integration.
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