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Abstract. Accurate gestational age (GA) estimation, ideally through
fetal ultrasound measurement, is a crucial aspect of providing excellent
antenatal care. However, deriving GA from manual fetal biometric mea-
surements depends on the operator and is time-consuming. Hence, au-
tomatic computer-assisted methods are demanded in clinical practice.
In this paper, we present a novel feature fusion framework to estimate
GA using fetal ultrasound images without any measurement informa-
tion. We adopt a deep learning model to extract deep representations
from ultrasound images. We extract radiomic features to reveal patterns
and characteristics of fetal brain growth. To harness the interpretabil-
ity of radiomics in medical imaging analysis, we estimate GA by fusing
radiomic features and deep representations. Our framework estimates
GA with a mean absolute error of 8.0 days across three trimesters, out-
performing current machine learning-based methods at these gestational
ages. Experimental results demonstrate the robustness of our framework
across different populations in diverse geographical regions. Our code is
publicly available on GitHub.

Keywords: Feature Fusion · Radiomics · Fetal Gestational Age · Ultra-
sound.

1 Introduction

Gestational age (GA) is the common term used during pregnancy to know the
duration of gestation. This estimation is based on the assumption of an average
fetal size at each stage of gestation. A normal pregnancy can range from 37
to 42 weeks [1]. Accurate dating of pregnancy is crucial for effective pregnancy
management throughout all stages, from the first trimester to delivery [21]. It is
essential for identifying premature labor and postdated deliveries [21]. Therefore,
precision estimation of GA enables the accurate scheduling of antenatal care
for women, guides obstetric management decisions, and supports the proper
interpretation of fetal growth assessments [23].

https://github.com/13204942/RadiomicsImageFusion_FetalUS
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However, in many settings, women attend their antenatal care late in preg-
nancy or even upon delivery, which presents challenges in accurately estimating
GA [21]. Ultrasound imaging is widely used for screening and monitoring of preg-
nant women, as well as fetal growth [18,22]. In the screening examination, bio-
metric measurements of the fetus, including the crown-rump length (CRL), head
circumference (HC), abdominal circumference (AC), and femur length (FL), are
commonly calculated to estimate the GA [12,23].

Recent advances in deep learning (DL) algorithms for fetal ultrasound image
analysis have shown the significant potential of deep representations in the accu-
racy of diagnosis and biometric estimation [8,20]. Several studies have employed
regression algorithms to estimate GA from ultrasound images [15,14]. These
methodologies primarily rely on deep representations extracted by DL models,
except [10], which provides an automated multimodal pipeline to estimate bio-
metric parameters and GA at the same time. DL models exhibit exceptional
performance in feature extraction; however, their lack of interpretability has re-
stricted the development of clinical applications in estimating GA. Prior studies
have shown that ultrasound images obtained during pregnancy can offer valuable
insights into fetal brain maturation, assisting in estimating GA for screening pur-
poses [19,26]. Recent research [27] demonstrates that radiomic features capture
physics-related characteristics, making them intrinsically interpretable. However,
there is a gap in the existing research as no study has yet explored combining
radiomic features with DL techniques for fetal ultrasound imaging analysis. To
our knowledge, this study represents the pioneering effort in creating an inter-
pretable pathway that combines radiomic features and deep representations to
estimate GA in fetal ultrasound images.

In this paper, we present a novel feature fusion framework that combines
radiomic features and deep representations of the fetal head extracted by a con-
volutional neural network (CNN) to improve the predictive accuracy of GA. We
evaluate the performance of our framework using two different fetal head ultra-
sound datasets and present quantitative results obtained from machine learning
(ML) and DL models for comparison. The main contributions of our work: (i) we
propose the first-ever feature fusion framework that combines fetal ultrasound
images and radiomics to estimate GA; (ii) we present a plug-and-play cross-
attention module for the effective fusion of radiomic features and deep represen-
tations; (iii) finally, comprehensive experiments demonstrate the effectiveness of
our fusion module in estimating GA on ultrasound data.

2 Methodology

2.1 Overview

An overview of our proposed fusion framework for estimating GA with radiomic
features and deep representations is illustrated in Fig. 1. The framework contains
three core components: (1) a pre-trained DL model, ConvNeXt [17], is used for
deep representation learning; (2) a Python pipeline extracts radiomic features;
(3) a cross-attention module for feature fusion.
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Fig. 1. Proposed fusion framework for GA estimation from fetal ultrasound images.
Blue Box: Trainable parameters (DL model, cross-attention, MLP). Gray Box: Non-
trainable parameters (Radiomics).

2.2 Deep Representation Learning

In our proposed framework, we employ the CNN topology to construct the DL
model fθ to learn deep representations that reflect high-level semantic informa-
tion of ultrasound images, where θ represents the learnable parameters of the
model. Specifically, we incorporate models such as ResNet18 [11], SwinTrans-
former [16], EfficientNet [24], MobileNet V3 [13], ViT [6], MaxViT [25], and
ConvNeXt [17] for their proven effectiveness in image classification tasks. The
DL model fθ in our proposed framework adopts the ConvNeXt stack architec-
ture with four layers. Each layer consists of a CNBlock followed by a convolution
layer. The CNBlock layers have channel size of 96, 192, 384, and 768, respectively.
The detailed illustration of the CNBlock structure is shown in Fig. 2(a).

When working with a grayscale fetal ultrasound image XUS, the initial step
involves converting XUS into a 3-channel image denoted as XUS ∈ R3×nh×nw ,
where nh and nw represent the height and width of the image, respectively. This
conversion is essential to facilitate the fine-tuning of pre-trained DL models
designed to process 3-channel input images. The input XUS is processed by the
model fθ, producing a deep representation vector that is subsequently fed to the
ReLU activation and linearly combined to output xDL ∈ R512. Subsequently,
xDL is fused with radiomic features x̄RAD within the cross-attention module.
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Fig. 2. Visualization of CNBlock and Cross-attention module. (a) is an example of
CNBlock with channel size 96; (b) represents the cross-attention module for integrating
radiomic features and deep representations. LN: Layer Normalization

2.3 Radiomic Features

Our dataset comprises fetal head ultrasound images and corresponding region
of interest (ROI) masks, denoted as XUS and XROI, respectively. The ROI en-
compasses the full extent of the fetal head, as annotated by sonographers. The
input XROI has dimensions of 1 × nh × nw, where nh and nw correspond to
the height and width of ROI image. The process of extracting radiomic features
utilizes each pair of XUS and XROI as input. In this study, a total of 95 radiomic
features xRAD ∈ R95, which capture surface-level details of the fetal head region,
are extracted with the open-source tool, pyradiomics5. These extracted features
are categorized into shape, statistical (first-order), and texture features [7,2,9].

The radiomic features are categorized into six groups: shape features (Shape2D),
First-order features, texture features consisting of gray level co-occurrence ma-
trix (GLCM), gray level run length matrix (GLRLM), gray level size zone matrix
(GLSZM), and gray level dependence matrix (GLDM) features. Before the fea-
ture fusion step, we standardize radiomic features xRAD by removing the mean
and scaling to unit variance to obtain x̄RAD ∈ R95. Subsequently, these stan-
dardized features x̄RAD are used as the input to the cross-attention module.

2.4 Feature Fusion

We pass features to a cross-attention module to perform fusion operation; see
Fig. 2(b). The cross-attention module in the model has an embedding size of
512 and is linked to a multi-layer perceptron (MLP) module. The MLP module
consists of two fully connected layers with a hidden feature size of 512 and
the ReLU activation layer. Firstly, input feature x̄RAD is linearly projected to
queries q = WQx̄RAD + bQ (q ∈ Rde), and feature xDL is linearly projected to
keys k = WKxDL + bK (k ∈ Rde), and values v = WVxDL + bV (v ∈ Rde). de
5 https://pyradiomics.re adthedocs.io/en/latest/
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represents the dimension of hidden embeddings. In our framework, de is set to
512. Next, the scaled dot-product attention is employed in the cross-attention
module. Mathematically, it can be expressed as:

XXA = softmax

(
qk⊤
√
dk

)
v = AXAv (1)

where AXA ∈ Rdq×dk is the attention weight matrix, and dk is the feature
dimension of k. The attention score (qk⊤ ∈ Rdq×dk) is computed between each
query and all keys. Normalization is done across the key dimension to obtain
attention weights AXA = softmax(·). The MLP module processes the cross-
attention module’s output to predict GA (denoted as ŷ ∈ R) as follows:

yXA = ReLU(WXA · vec(XXA) + bXA ) (2)
ŷ = WMLP · yXA + bMLP (3)

where vec(·) is the flatten function, and yXA ∈ R512 is a feature vector.

2.5 Model Training and Loss Functions

We employ a fine-tuning strategy for our framework, initializing the DL models
with pre-trained weights from ImageNet [5]. Only the trainable components in
our proposed framework are fine-tuned; see Fig. 1. We optimize the likelihood
of the ŷ regression output and therefore use the least squares for the overall
training loss: L =

∑M
i=1

(
y⟨i⟩ − ŷ⟨i⟩

)2
, where ŷ⟨i⟩ is the model predicted GA for

the ith training input and y⟨i⟩ is the computed GA as described in Section 3.1.
M is the size of the training set. The model with the best performance is saved
for testing based on their predictive accuracy during the model training phase.

Machine Learning. In our extensive analysis, we build traditional ML mod-
els for predicting GA using radiomic features exclusively. These models include
Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest
(RF), AdaBoost, Ridge and Gradient Boosting Regression (GBR). Addition-
ally, we perform feature selection, including recursive feature elimination (REF)
and least absolute shrinkage and selection operator (LASSO), to improve the
performance of ML models.

3 Experiments and Results

3.1 Datasets

We utilize two public datasets in this study: the Spanish trans-thalamic dataset
(ES-TT) originates from two centers in Spain [4]; the HC18 dataset is sourced
from a database in Netherlands [12]. All scans were acquired from healthy single-
ton pregnancies. HC18 data was collected using two ultrasound machines from a
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single center, while ESTT data was obtained from six machines across two differ-
ent centers. The variability of the fetal head across various pregnancy trimesters
poses a challenge in estimating GA. We combine two datasets into one and use
a 70:30 ratio to split the data into training and testing sets. A subset of 100
images from the test set is randomly selected for validation purposes.

ES-TT. The images in this dataset are captured when pregnant women
are in their second and third trimesters undergoing routine examinations [4,3].
The training set comprises 1086 images from 704 patients, while the test set
includes 466 images from 391 patients. Students, experienced physicians, and
radiologists annotated the ROI of the fetal head in all images. A file detailing
the pixel calibration, psize (in mm), for each image is also provided.

HC18. This dataset includes fetuses without any growth abnormalities. The
images are captured by experienced sonographers [12]. In each image, the sono-
grapher draws an ellipse as ROI to best fit the circumference of the fetal head.
We utilize 799 annotated images that are publicly accessible. The training set
has 697 images from 603 patients, while the test set has 300 images from 279
patients. The pixel calibration, psize (in mm), is provided for each image.

Formula Calculated GA. The ES-TT dataset provides the pixel size psize
for every ultrasound image in millimeters, while the HC18 dataset presents the
HC values in millimeters corresponding to each image. To obtain the GA for
all images, we calculate the number of pixels, denoted as pnum, along the edge
of the respective ROI in the input image XROI. Subsequently, we compute the
corresponding HC in millimeters (mm) using the formula: HC = pnum × psize.
We obtain the GA (y⟨i⟩) using the equation derived from previous research [21]:
GA = exp

[
0.05970× (loge(HC))

2
+ 0.000000006409× (HC)3 + 3.3258

]
.

3.2 Implementation Details

The input image XUS and mask XROI are resized to the same resolution, 256×
256. To decrease computational demands, XUS is normalized following the same
process from [11]. The Adam optimizer is utilized with an initial learning rate
of 10−5 following a weight decay of 10−6. The batch size is fixed at 8, and the
epoch is set to 60. Our framework is implemented using Pytorch library and
trained on a single RTX 4090 GPU with 24 GB memory.

Data Augmentation. During model training, we apply common data aug-
mentation techniques on the images within the training set. Specifically, these
augmentation techniques randomly rotate the images within range (−15◦, 15◦)
and randomly flip them horizontally with a probability of 50%.

3.3 Results

To assess the accuracy of predicting GA, we use Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) as the evaluation metrics. We find that the
correlation coefficient between MAE and RMSE is larger than 0.998. Therefore,
we only report the MAE in this paper. We evaluate our method by comparing
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Table 1. Test results of GA estimation
using DL models with concatenation and
cross-attention mechanisms. C: Concatena-
tion. XA: Cross-attention.

DL Model C XA MAE ↓ P-value
ResNet18 [15] ✗ ✗ 9.9±0.02
EfficientNet ✗ ✗ 9.3±0.00

<10−3MaxViT ✗ ✗ 10.7±0.02
SwinTrans ✗ ✗ 9.4±0.01
ConvNeXt ✗ ✗ 8.6±0.01
ResNet18 ✓ ✗ 10.2±0.01
EfficientNet ✓ ✗ 8.6±0.02

<10−3MaxViT ✓ ✗ 9.6±0.04
SwinTrans ✓ ✗ 8.6±0.01
ConvNeXt ✓ ✗ 8.7±0.01
ResNet18 ✗ ✓ 10.4±0.01

–
EfficientNet ✗ ✓ 8.6±0.00
MaxViT ✗ ✓ 8.7±0.00
SwinTrans ✗ ✓ 8.3±0.00
ConvNeXt ✗ ✓ 8.0±0.00

Table 2. Test results of GA estimation
using ML models by adopting LASSO
and RFE techniques to select radiomic
features. SVM: Support Vector Machine.
KNN: K-Nearest Neighbors. RF: Ran-
dom Forest. GBR: Gradient Boosting
Regression.

ML Model MAE ↓ R2 ↑
SVM (LASSO) 25.2±24.3 0.62
KNN (LASSO) 25.2±25.1 0.61
AdaBoost (LASSO) 26.8±23.6 0.60
Ridge (LASSO) 25.7±22.3 0.64
RF (LASSO) 21.7±23.0 0.69
GBR (LASSO) 21.8±22.9 0.69
SVM (RFE) 24.9±24.4 0.62
KNN (RFE) 24.5±24.6 0.62
AdaBoost (RFE) 26.5±23.7 0.61
Ridge (RFE) 25.8±22.3 0.64
RF (RFE) 21.4±23.1 0.69
GBR (RFE) 21.3±22.6 0.70

it with Baseline utilizing only images and Concatenation utilizing concatenated
image and radiomic features.

From Table 1, we observe several key findings. Our proposed framework has
achieved the best result, with an average MAE of 8.0 (days). Quantitative anal-
ysis shows a significant improvement in accurate GA estimation with the cross-
attention module compared to both the concatenation module (p < 0.001) and
the baseline model (p < 0.001). Our method enhances the baseline method,
ResNet18 [15], by 1.9 days in accurately estimating GA. Despite ResNet18
and EfficientNet models exhibiting higher MAE values when utilizing the cross-
attention module than the concatenation module, the overall accuracy across all
architectures is significantly improved with the former (p < 0.001), showcasing
the superiority of the cross-attention mechanism. It is notable that ConvNeXt,
an efficient model with 3.7M parameters, demonstrates superior performance
compared to four other DL-based feature extractors, as evidenced in Table 1.

Table 2 shows the test results of various ML algorithms without using the
radiomic features. The statistical metric R-squared (R2), also known as the
coefficient of determination, is employed to assess the adequacy of a model in
fitting the data. The R2 value suggests that GBR (RFE) is a more effective
model for capturing the radiomic features than other ML algorithms. However,
all ML algorithms exhibit significantly higher MAE values in GA estimation
compared to our proposed method, highlighting the superiority of our method
over traditional ML algorithms.

For better understanding, we visualize the cross-attention maps of three test
cases from the 1st, 2nd, and 3rd trimesters in Fig. 3. The bar charts are employed
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Fig. 3. The visualization of the interpretability of our method. IDMN: Inverse Dif-
ference Moment Normalized. SDHGE: Small Dependence High Gray Level Emphasis.
SAGLE: Small Area High Gray Level Emphasis. SRHGLE: Short Run High Gray Level
Emphasis. HGLE: High Gray Level Emphasis.

Table 3. Ablation study on the different feature fusion modules and pre-trained
weights. C: Concatenation. XA: Cross-attention.

Model Image Pre-trained C XA MAE ↓
ConvNeXt ✓ ✗ ✗ ✗ 28.9±0.04
ConvNeXt ✓ ✓ ✗ ✗ 8.6±0.01
ConvNeXt + C ✓ ✓ ✓ ✗ 8.7±0.01
ConvNeXt + XA (Ours) ✓ ✓ ✗ ✓ 8.0±0.00

to visualize the five most influential radiomic features for GA estimation, as
determined by cross-attention weights. In the 1st and 3rd samples, Shape2D and
First-order features are the primary contributors to the estimation. In contrast,
in the 2nd sample, a diverse set of features such as GLDM, GLSZM, GLRLM,
and GLCM play a significant role in the prediction.

Ablation Study. We investigate the effectiveness of three primary compo-
nents in our framework: fine-tuning strategy, feature fusion strategy, and cross-
attention module. We first set up a baseline framework without using these com-
ponents. Table 3 illustrates the significance of fine-tuning the framework with a
pre-trained DL model in enhancing the accuracy of predicting GA. The feature
fusion strategy using the concatenation method demonstrates minimal signifi-
cance in our framework. However, integrating cross-attention into our framework
substantially enhances the accuracy of predicting GA. This indicates that the
cross-attention module facilitates a more effective fusion of deep representations
and radiomic features.
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4 Conclusion

This study introduces a novel feature fusion framework that combines image
and radiomic features to estimate fetal GA from ultrasound images. This frame-
work can be developed into an interpretable tool for clinical use. We validate
our framework on two fetal head ultrasound image datasets and achieve better
results than those achieved by existing image-based DL and radiomic-based ML
methods. Moreover, our framework can readily be utilized to analyze additional
fetal anatomical structures in ultrasound, such as the fetal abdomen and femur.
Hence, our proposed framework is a valuable algorithm that collaborates with a
segmentation model to estimate GA, thereby benefiting patients and clinicians
in clinical practice. Our future work includes enhancing the performance of GA
estimations by utilizing a combination of multiple metrics obtained from various
standard ultrasound planes across diverse cohorts. These experiments will be
validated using larger datasets.
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