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Abstract. Noise in medical imaging is an inevitable challenge, often
stemming from acquisition artifacts, varying imaging protocols, and ex-
ternal interference. While some studies suggest that noise can enhance
model robustness, excessive or unstructured noise degrades training qual-
ity and classification performance. This issue is further exacerbated in
federated learning settings, where individual clients have limited local
data, making it difficult to train robust models independently. Federated
imputation has been explored as a solution, yet existing methods do not
fully leverage federated learning settings for optimal noise reconstruc-
tion. In this work, we introduce a novel encoder-decoder based federated
imputation method, designed to replace noisy images with more represen-
tative reconstructions before training. Experimental results demonstrate
that classification models trained with images imputed by the proposed
method consistently outperform those trained with raw noisy images
and without noisy images, highlighting the importance of effective noise
handling in federated learning-based medical imaging.
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1 Introduction

Medical imaging plays a crucial role in modern diagnostics. However, medical
images are often affected by various types of noise due to acquisition artifacts,
differing imaging protocols, and external interference [1]. Although a modest level
of noise may occasionally promote model robustness [2], excessive or erratic noise
typically impairs both image quality and subsequent classification performance.
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To address these challenges, various image inpainting techniques[3,4,5,6,7,8,9]
have been developed, ranging from traditional methods to modern deep learning-
based approaches. Bertalmio et al. [3] was one of the first studies to propose
an image inpainting technique for restoring occluded regions in digital images.
It introduced a partial differential equation (PDE)-based inpainting approach,
making significant contributions to traditional inpainting methods. Hassanpour
et al. [4] introduced edge-aware coarse-to fine GAN (E2F-GAN) to achieve more
natural reconstructions. Kingma et al. [5] and Vaswani et al. [6] introduced Vari-
ational Auto Encoder (VAE) and Transformer model which led to significant
improvement in generating plausible image structures [7] . Unlike traditional
models, these approaches learn high-level semantic features, allowing more co-
herent image restoration. Recent generative models leverage encoder-decoder ar-
chitectures to reconstruct missing or noisy regions more effectively. Jeevan et al
[8] introduced WavePaint model leveraging multi-resolution token mixing using
2D-discrete wavelet transform (DWT) [9] to reconstruct occluded regions effec-
tively. Despite these advancements, many inpainting methods still show tiling or
patch-like artifacts in the filled regions and rely on externally provided masks as
an additional input alongside the corrupted image. This dependency complicates
the training pipeline and limits model adaptability in real-world scenarios where
such masks are unavailable.

However, in federated learning (FL) settings, noise-related issues are exac-
erbated due to the limited local data available to each client [10]. This data
scarcity hampers independent model training, making robust learning particu-
larly challenging [11]. Recent studies [12,13] have investigated federated impu-
tation methods to enhance image reconstruction before training. Wu et al. [12]
have presented a novel approach to enhance noise robustness in FL by sampling
confidence-based learning weight adjustment and noise-aware global optimiza-
tion. Balelli et al. [13] introduced Fed-MIWAE leveraging a VAE-based genera-
tive model within FL to effectively compensate for missing values in each client.
These approaches improve imputation performance by combining the strengths
of generative modeling and privacy-preserving learning. However, existing stud-
ies do not fully leverage FL’s decentralized setting.

In this work, we introduce an encoder-decoder-based federated imputation
method designed to enhance noise reconstruction in FL environments. The pro-
posed approach incorporates the following key advancements:

– End-to-End Learning: We developed an end-to-end framework in which
the model automatically identifies noise and utilizes it for inpainting. Unlike
conventional methods, the proposed model predicts occlusion masks directly
from the input image, streamlining the imputation process.

– Swin Transformer-based WaveMix Module: We employed a Swin Trans-
former [15] for token mixing, effectively reducing repetitive artifacts and en-
hancing fine-grained image details. It combines an attention-based structure
with a probability map for occluded regions, which enables more natural and
accurate reconstructions, improving FL-based medical imaging tasks.
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This novel framework not only eliminates the need for manual mask annotations
but also significantly enhances the quality of imputed images, leading to more
robust model training in federated medical imaging environments.

Fig. 1. (a) The overall architecture of a Swin WavePaint; (b) difference from Wave-
Paint; (c) architecture of Deep Feature Extractor (DFE). Swin WavePaint consists
of Noise Predictor Module and Swin WaveMix Modules. Swin WaveMix Module uses
one Swin WaveMix Block consists of level 1 2D-DWT [14] and DFEs. DFE uses Swin
Transformer Block [15] to extract deep features from the results of wavelet trasforms.
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2 The Proposed Model

2.1 Imputation Model

The proposed imputation model is built on some major modules and functions:
noise prediction module, layer normalization, wavelet decomposition, and swin-
transformer based token mixing, which are shown in Fig. 1. We train the model
in both centralized and federated settings to demonstrate the effectiveness of our
modules.

Noise Prediction Module. We employ a noise predictor module that esti-
mates the location of missing or corrupted regions without relying on external
noise information. The module contains three convolutional layers and a sig-
moid activation that produces a probability map indicating which pixels belong
to the occluded region. The predicted mask is then used internally to guide the
inpainting process, enabling an end-to-end pipeline that only requires the noisy
image.

Wavelet Decomposition. We employ 2D-discrete wavelet transforms (DWT)
to perform efficient spatial token mixing. A single-level wavelet decomposition
splits the input features into a low-frequency (LL) component, capturing global
structure, and multiple high-frequency (LH, HL, HH) bands that encode fine
textures and edges. Because wavelet transforms do not introduce additional
learnable parameters, they help keep the model lightweight. Furthermore, the
inherent downsampling in wavelet decomposition expands the effective receptive
field quickly, which is advantageous for capturing larger contextual information
in inpainting tasks.

Deep Feature Extractor. We employ DFE blocks in conjunction with wavelet
decomposition to extract deep feature through Swin Transformer-based Token
Mixing. We integrate 4 Swin Transformer layer in the high-frequency branch,
leveraging window-based multi-head self-attention and hierarchical feature ex-
traction. In particular, each window is processed locally, and subsequent layers
apply shifted windows to encourage cross-window interactions. This mechanism
helps reduce tiling or patch-like artifacts that can occur when the model repeat-
edly applies the same learned patterns to fill large occlusions.

Layer Normalization. We employ Layer Normalization (LN) [16] instead of
Batch Normalization (BN) to ensure batch-independent stability, particularly in
FL environments, where institutions have varying computational resources and
hardware constraints. In an FL setting, some institutions (clients) may have lim-
ited computing power, making it difficult to process large batch size efficiently.
Since BN relies on stable batch statistics, small or inconsistent batch sizes can
degrade performance and hinder generalization. In contrast, LN normalizes ac-
tivations per sample, ensuring stability regardless of batch size. This makes it
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suitable for institutions with limited computational resources, enabling effective
training with smaller batches.

2.2 Classification Model

The classification model contains a total of seven hidden layers, consisting of
five convolutional blocks and two fully connected (FC) layers. The five convolu-
tional layers serve as the primary feature extractors by applying learnable filters
to capture local patterns in the input image. As the network deepens, these
build hierarchical representations from simple to complex features, with pooling
operations reducing spatial dimensions and emphasizing key information. The
FC layers combine features, which are extracted from the covolutional layers,
through non-linear transformations to produce class probabilities. The model is
trained only in federated setting.

3 Experiments

3.1 Dataset

The proposed model is evaluated on the PathMNIST dataset from MedMNIST,
which is a benchmark for medical image classification [17]. PathMNIST provides
images in multiple resolutions – 28x28, 64x64, 128x128, and 224x224 – for 2D
images, and we use only the 224x224 resolution images to better leverage stan-
dard deep learning architectures and improve feature extraction. The dataset
provides a robust benchmark for developing resource-efficient models in medical
image classification under diverse imaging conditions. The dataset is partitioned
into 89,996 training images, 10,004 validation images, and 7,180 test images.

3.2 Noise Generation

There are three types of noise: the narrow mask occludes small areas, requiring
detailed restoration; the medium mask covers moderately sized areas, needing
more information to be filled in; and the wide mask covers large areas, helping
the model handle more complex restoration tasks. The noise is created in binary
form, with missing parts marked as 1 and the remaining parts as 0, and are used
as inputs to the model to guide it in reconstructing only the occluded areas.
In addition to these three types of noise generation methods from the previous
WavePaint model, we incorporated the Noisy Mask, which randomly places noise
points at the pixel level to create irregular and unpredictable occlusions. This
type of noise further challenges the model by introducing non-uniform and ran-
dom missing regions, requiring the model to handle more diverse and complex
restoration tasks. We show types of noise in Fig. 2.
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Fig. 2. Types of Noise

3.3 Federated Learning

We configured the number of clients to 10 under a Quantity Skew setting. The
89,996 training images are partitioned into 10 disjoint client datasets. In contrast,
the 10,004 validation images are not partitioned across clients but are used as a
centralized shared validation set for all clients during training. To further emulate
real-world non-IID distributions, each clients is assigned a favored label, with
approximately 70% of its data drawn from that class, while the remaining 30% is
randomly sampled from other classes. This strategy not only mirrors the inherent
quantity imbalance across institutions but also introduces label skew, ensuring
that each client’s dataset uniquely reflects the varying prevalence of conditions
without any duplicate samples.

We assume that half of each client’s data is corrupted with random noise while
the other half remains clean. The standard PathMNIST validation set is used
to monitor the model during training, and the final performance is evaluated
on the test set. To integrate the global model, we employed FedAVG [18] for
federated optimization, aggregating model updates from distributed clients. We
set the number of global rounds for both federated inpainting and classification
to 10, with each client performing 10 epochs of local training per round. The
experiments were conducted on four GeForce RTX 2080 Ti GPUs.

3.4 Inpainting

We use hybrid loss function, which integrates LPIPS, L1, and MSE loss functions
[8]. The LPIPS component captures perceptual similarities, while the L1 and
MSE terms ensure pixel-level accuracy, yielding a balanced evaluation of both
visual fidelity and quantitative performance. In both centralized and federated
settings we employ AdamW optimizer with a learning rate of 0.001. The beta
coefficients were set to (0.9, 0.999), epsilon to 1e-8, and weight decay to 0.01.
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Table 1. Inpainting Results on Centralized setting

Model Hybrid Loss LPIPS MSE L1
WavePaint 0.508 0.0376 0.0128 0.0136

LN(Proposed) 0.406 0.0335 0.0020 0.0121
Swin(Proposed) 0.431 0.0356 0.0021 0.0129

Table 2. Inpainting Results on Federated setting

Model Hybrid Loss LPIPS MSE L1
LN(Proposed) 0.728 0.0624 0.0032 0.0176

Swin(Proposed) 0.705 0.0607 0.0029 0.0167

3.5 Classification

Classification is performance using raw noise data, deleted data, and imputed
(by previous inpainting model and the proposed inpaining model) data in fed-
erated setting. We employ Cross Entropy Loss as a loss function for training
classification model, and Stochastic Gradient Descent(SGD) with learning rate
of 0.001 and momentum of 0.9. We evaluate the performance by Accuracy (ACC)
and Area Under the ROC Curve (AUC).

Table 3. Classification Results for PathMNIST on Federated setting.

Noise Handling ACC AUC
Drop Noise 0.5287 0.9261
With Noise 0.7082 0.9553

LN(Proposed) 0.7173 0.9575
Swin(Proposed) 0.7097 0.9569

3.6 Results and Discussions

In Table 1, the performance of the proposed LN (using LN instead of BN in Wave-
Paint) and Swin methods is compared against the baseline WavePaint model in
terms of Hybrid Loss, LPIPS, MSE, and L1 metrics, where lower values signify
better performance. Both proposed models outperform the WavePaint baseline,
with the LN method achieving the lowest Hybrid Loss, LPIPS, MSE and L1. This
result indicates that the proposed LN is particularly effective at reconstructing
noisy images in centralized setting.

On the other hand, Table 2 compares the performance in FL setting. It is
shown that the proposed Swin method consistently exhibits marginally lower
values across all evaluation metrics relative to the LN method. This suggests
that the Swin architecture is better suited to address the inherent challenges
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of FL—namely, handling heterogeneous data distributions and communication
constraints—thereby yielding improved inpainting quality.

Table 3 assesses the impact of different noise-handling strategies on clas-
sification performance using the PathMNIST dataset in a federated environ-
ment. The strategy of dropping noisy data yields the lowest ACC, while training
with all data (with noise) improves both ACC and AUC. Notably, the proposed
imputation-based approaches (LN and Swin) further enhance classification per-
formance, as evidenced by higher ACC and AUC values compared to the simpler
noise-handling methods. These findings underscore the efficacy of imputation
techniques in mitigating the adverse effects of noise on classification outcomes
in FL settings.

4 Conclusion

In this work, we present a novel encoder-decoder based federated imputation
method designed to address the challenges of noisy data in medical imaging, par-
ticularly within FL environments. The proposed methods have two key advance-
ments, end-to-end federated imputation and deep feature extractor using Swin-
Transformer-based token mixing. We performed evaluations using the PathM-
NIST dataset. In centralized environment, the proposed LN method demon-
strated superior performance. On the other hand, in distributed environement,
such as in non-IID FL environment, the proposed SWIN method achieved en-
hanced performance than the LN method, suggesting that its attention-based
architecture is better suited to handle non-IID distributions and communica-
tion constraints inherent in FL. Furthermore, classification experiments reveal
that imputation-based noise handling significantly improves model performance,
demonstrating that effective imputation can mitigate the adverse effects of noise
on classification outcomes in decentralized environments. Overall, the experi-
ments highlight the potential of federated imputation as a robust strategy for
enhancing medical image reconstruction and classification.
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