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Abstract. Geometric reconstruction and SLAM with endoscopic im-
ages have advanced significantly in recent years. In most medical fields,
monocular endoscopes are employed, and the algorithms used are typi-
cally adaptations of those designed for external environments, resulting
in 3D reconstructions with an unknown scale factor.
For the first time, we propose a method to estimate the real metric
scale of a 3D reconstruction from standard monocular endoscopic images,
under unknown varying albedo, without relying on application-specific
learned priors. Our fully model-based approach leverages the near-light
sources embedded in endoscopes, positioned at a small but nonzero base-
line from the camera, in combination with the inverse-square law of light
attenuation, to accurately recover the metric scale from scratch. This
enables the transformation of any endoscope into a metric device, which
is crucial for applications such as measuring polyps, stenosis, or assessing
the extent of diseased tissue.
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1 Introduction

In current endoscopic procedures, endoscope navigation, localization, and tissue
measurement are performed manually. Recent advances in Visual Simultaneous
Localization and Mapping (VSLAM) for endoscopy [17,18,10] offer the promise
of live 3D reconstructions, that will enable autonomous or assisted navigation
and robotized interventions. Most specialties use just monocular endoscopes to
reduce bulk and cost. However, using a moving monocular camera, the absolute
scale of the environment is unobservable, and the 3D reconstructions and tra-
jectories obtained have an unknown scale factor. This also introduces scale drift
which significantly reduces map accuracy.

However, endoscopes are equipped with light sources attached to the camera,
which introduce significant illumination variations in the scene. Our key insight
is to leverage these illumination changes through near-light photometry to ac-
curately recover the true metric scale of monocular reconstructions. Photometry
⋆ These authors contributed equally to this work.
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Fig. 1. Our method estimates the metric scale factor λ by leveraging a near-light
illumination model applied to multi-view images captured with a monocular endoscope.

is scale-dependent due to two factors: the inverse-square decay of illumination
with distance from the light source, and the angle between the incident light and
the surface normal when the light source is positioned at a small, but nonzero,
baseline from the camera’s optical center (Figure 1).

We demonstrate how true scale can be recovered just from the images cap-
tured by a standard monocular endoscope in two steps: first, obtaining an up-
to-scale reconstruction with SfM or VSLAM, and then performing photometric
optimization to recover scale, gains, and per-point albedo. Our contributions are:

– A scale-dependent near-light photometric model applicable to any monocu-
lar, up-to-scale multi-view reconstruction.

– A photometric optimization method to estimate true metric scale, per-point
albedo, and camera gain.

– An initialization technique to enhance convergence and avoid local minima.
– Simulations and real experiments demonstrating the scale accuracy achiev-

able in endoscopy.

2 Related work

Feature-based monocular SLAM [4,7] and SfM [22] recover up-to-scale geome-
try via bundle adjustment, ignoring photometry. Photometric monocular SLAM
[8,27] estimates geometry, albedo, and camera gains but assumes constant il-
lumination and cannot recover scale. In contrast, we first estimate up-to-scale
geometry via bundle adjustment and then determine metric scale, albedo, and
camera gain using non-linear optimization of near-light photometric errors.

Our method relates to photometric stereo, originating from [24], which used
orthographic images from a fixed camera with distant, switchable light sources
to recover surface normals, but not scale. The first method to recover metric
scale was [15], leveraging inverse-square illumination decay from multiple point
lights at known positions. Near-field photometric stereo, where the camera and
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light sources are close to the object, was formalized in [19], with semi-calibrated
approaches introduced by [20], requiring known light positions but unknown in-
tensities. Using an endoscope for calibrated near-light photometric stereo was
first explored in [5], combining three colored light sources into a single shot for
true-scale reconstruction. In summary, near-light photometric stereo can gen-
erate real-scale reconstructions from three or more images with different point
light sources. However, for endoscopy, the device must be modified to control
the lights or use colored lights, which is impractical in clinical settings.

Other hardware modifications use structured light to overlay a metric scale
on the image for polyp measurement [26,21]. Some works train a deep network to
classify polyps into two size classes (smaller or larger that 10 mm) [14,13] or to
predict dense depth with true scale for polyp measurement [6,23]. However, these
methods require task-specific learning and do not generalize to other medical
applications. In contrast, we achieve metric-scale reconstruction and estimate
the camera’s metric trajectory using a standard endoscope without hardware
modifications or task-specific learning, relying solely on near-light photometry.

Near-light shape-from-shading was used in [25] to recover a metric-scale re-
construction from a single perspective image, but relying on strong assumptions
of known light intensity and a constant, known albedo. Similar methods [11,3]
assumed that the light source is located at the optical center, i.e., the baseline is
zero. As a result, it becomes impossible to disambiguate scale from albedo. This
yields only up-to-scale reconstructions due to three unknown factors: illumina-
tion power, camera gain, and surface albedo. Multi-view near-light photometry
to jointly recover scale, gain, and per-point albedo was first proposed in [9], but
only validated through simplistic simulations with up-to-scale ground truth ge-
ometry. We take a step further by demonstrating that the method can work from
the near-light images alone in realistic simulations and in real colonoscopies.

3 Fundamentals

To analyze some properties of near-light photometry we first consider a simplified
two-view problem [9] (Figure 1b). It assumes a moving monocular camera with
a single point light source at a distance b from the optical center, observing a
Lambertian point with albedo ρ, which lies along the camera’s optical axis at a
depth λz, with its normal pointing towards the camera. The second camera is
translated λt to the right. We aim to compute the unknown scale λ.

Assuming the light intensity L0 and camera gain g are constant, and no
gamma compression, the intensity of the point i in each image k will be [15]:

Ii,k(λ) =
ρigL0

π

ni · lk
∥lk∥3

=
ρ′i
π

ni · lk
∥lk∥3

(1)

where ρ′i = ρigL0 is a scaled albedo. The intensities in both images are:

Ii,1 =
ρ′i
π

λz

(b2 + λ2z2)
3/2

, Ii,2 =
ρ′i
π

λz(
(λt+ b)

2
+ λ2z2

)3/2
(2)
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We can eliminate ρ′i to get a second-order equation on λ:

b2 + λ2z2 = c
(
(λt+ b)

2
+ λ2z2

)
(3)

where c = (Ii,2/Ii,1)
2/3 is a known constant determined form the intensities

measured in the images. This equation allows to obtain λ, except when b = 0,
in which case λ simplifies away, and cannot be solved.

We can conclude that in a multi-view near-light scenario, metric scale is ob-
servable only when the baseline between camera and light source is non-zero,
even if light intensity, gain and albedo are unknown. Also, we can expect scale
accuracy to degrade when the distance to the surface is too large compared
with the camera-light baseline. The remainder of the paper proposes a practi-
cal method for obtaining the scale in real endoscopic settings and studies its
accuracy.

4 EndoMetric

Our proposed method, EndoMetric, works in two steps: first obtain an up-to-scale
multi-view reconstruction of the scene using any SLAM or SfM method, and then
solve an optimization problem for metric scale estimation that impose albedo
consistency. The key for scale estimation is leveraging a near-light photometric
model that takes into account the baseline of the light sources with respect to
the camera and the inverse-square law of illumination decline with distance.

4.1 Up-to-scale Multi-view Reconstruction

Classical multiview geometry can produce, from a sequence of calibrated monoc-
ular images (at least two), the geometry of n scene points {xi}ni=1 and m camera
poses {Tk = (Rk, tk)}mk=1 up to an unknown scale factor λ, by solving bundle
adjustment, i.e. the non-linear optimization of the re-projection errors of the
points matched along the sequence. We use the well known COLMAP [22] to
compute multiview geometry from endoscopic sequences. Photometric models
need not only the sparse scene geometry, but also the surface normals at each
scene point. We propose to compute the normals ni by fitting a plane to the p
neighbors of each scene point.

4.2 Near-light Photometric Model

We assume a calibrated mobile camera with r fixed point light sources at known
positions relative to the optical center {bj}rj=1. All lights share the same intensity
L0, uniformly distributed in all directions, with a calibrated lens vignetting.
Points near specular reflections are discarded, and the surface is assumed to be
Lambertian with an unknown, varying albedo.

We have m grayscale images {Ik}mk=1 taken from m poses while observing n
scene points. For a given point i in an image k the image intensity depends on
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the point albedo ρi, the camera gain gk and the light intensity L0. The observed
albedos are always multiplied by the camera gain, gk, and L0. As these values
are not provided by currently available endoscopes, we define two new variables
that are observable from the images:

ρ′i = ρig1L0 , g′k =
gk
g1

(4)

where ρ′i is a scaled albedo (that may be greater than 1) and g′k represents the
gain change with respect to the first image.

Illumination depends on the incidence angle and the inverse-square of the
distance between light and point. Then, the perceived radiance depends on the
unknown scale factor λ of the multi-view reconstruction as (Figure 1c):

Ii,k(ρ′i, g′k, λ) =

ρ′ig
′
k

π

r∑
j=1

cos θi,j,k(λ)

∥λxi − (Rk bj + λtk)∥2
V (xi)

1/γ

(5)

where cos θi,j,k(λ) = ni
λxi−(Rk bj+λtk)

∥λxi−(Rk bj+λtk)∥ , V (xi) is the calibrated lens vignetting
and γ is gamma compression.

Note that, if all light-camera baselines bj were zero, λ2 could be extracted
from the denominator and all intensities would be proportional to ρ′i/λ

2, produc-
ing a fundamental ambiguity: you can multiply the scale by any constant c just
multiplying all albedos by c2. So, also in the general case, a non-zero baseline is
needed to break the ambiguity and estimate true scale and per-point albedo.

4.3 Metric Scale Estimation

Given the up-to-scale reconstruction, our near-light photometric model, and the
original images I1...Im, our goal is to recover the scale factor λ and, as a side
product, the point albedos ρ′i and camera gain changes g′k. This can be achieved
by minimizing the photometric error with respect to the model:

argmin
{λ,ρ′

1...ρ
′
n,g

′
2..g

′
m}

∑
i,k

∥Ii,k(ρ′i, g′k, λ)− Ii,k∥2ϵ (6)

where Ii,k is the intensity of point i observed in image Ik. A robust cost function
is used to reduce the influence of spurious data. This nonlinear optimization is
solved using the Levenberg-Marquardt method implemented in Ceres [1].

4.4 Initial Guess for the Scale

To avoid local minima and achieve faster convergence it is crucial to find good
initial values for the optimization variables (λ, ρ′i, and g′k). Indeed, these variables
are closely related, therefore, instead of estimating their initial values separately
as in [9], we propose to estimate them jointly.
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Fig. 2. Method accuracy depends on surface distance, performing best when it matches
the light-camera baseline. Left: Scale error increases from 1% to 5% with distance.
Right: Greater distances weaken the photometric cost function’s minimum.

We perform an exhaustive search for the scale parameter λ over a logarithmic
space Λ. For each trial value λ̂, we estimate the albedo values ρ̂′i solving (5) for
each point in the first image. Then, to estimate the relative gains of the rest of
images, we perform a robust regression. First, we undo the gamma compression
Iγ to work in linear space. Next, we find the gain value ĝk that minimizes the
difference between the real value Iγi,k and the estimated value Iγ

i,k of the points
using the robust cost function. Finally, we select the value of λ̂ with the lowest
residual according to (6).

5 Experiments

5.1 Datasets

Simulation dataset. Real endoscopic images with a ground-truth metric scale are
difficult to obtain. Therefore, we assessed the accuracy of our method through
simulations. Our endoscope has a monocular fisheye camera and three surround-
ing light sources with a ∼3mm baseline (Figure 1a). We used a real 3D mesh
from [12], a Lambertian illumination model, and Gaussian pixel noise of 4 gray
levels. Examples are available in the supplementary video.

EndoMapper dataset [2]. We validate our method using real endoscopy videos to
assess its performance in real-world conditions. To our knowledge, EndoMapper
is the only dataset that provides both photometric calibration of the endoscope
and metric-scale annotations of polyp sizes estimated by endoscopists. It uses
a calibrated Olympus endoscope with three light sources. We interpret the pro-
vided light spread as vignetting, since both were jointly estimated, and we use
isotropic light sources positioned according to the manufacturer’s datasheet.

5.2 Impact of Distance to the Surface

In our simulation dataset, the endoscope is positioned to face a polyp at varying
distances from the surface (3 to 20 mm), capturing images from slightly different
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Table 1. Accuracy at near-field ranges (5mm). The study highlights the importance
of precise multi-view geometry Tk and the benefits of our initial guess.

Optimized % error
λ ρ′ g′

Initial
guess Tk ni λ ρ′ g′

EndoMetric ✓ ✓ ✓ ✓ SfM SfM 0.95 5.48 3.37
A ✓ ✓ ✓ ✓ SfM GT 0.81 4.52 4.04
B ✓ ✓ GT ✓ SfM GT 0.80 3.99 –
C ✓ ✓ GT ✓ GT GT 0.17 3.44 –

D ✓ ✓ ✓ ✗ SfM SfM 38.21 18.43 3.88

Ablation
study

E ✓ ✓ ✓ [9] GT GT 1.23 4.25 4.57

viewpoints, which could be easily achieved in practice by bending the endoscope
tip. Four images are used at a time to reconstruct the 3D shape with COLMAP
and estimate its scale. Figure 2L presents the average scale error as a function
of distance to the surface. Since different image sets may yield varying results,
we report the mean and standard deviation over five experiments.

The method achieves an error of approximately 1% at distances up to 8 mm,
which are typical in endoscopic procedures. This confirms its effectiveness in
near-field conditions, where the distances between the camera, light sources,
and surface are of the same order of magnitude. The scale error rises to 5% as
we move away from the surface, since the photometric cost function exhibits a
less marked minimum (Figure 2R).

5.3 Impact of Multi-View Reconstruction Accuracy

Focusing on near-field conditions, Table 1 presents an ablation study using only
images from our simulation dataset captured at approximately 5 mm from the
surface. Results show that scale accuracy remains similar whether ground-truth
surface normals (row A) or camera gain values (row B) are provided. How-
ever, the error decreases significantly in the scenario with the most ground-truth
information (row C), suggesting that improving the underlying multi-view re-
construction could enhance the accuracy of our scale estimation method.

5.4 Impact of Initial Guess

Our photometric cost function is non-linear and can exhibit multiple local min-
ima, as illustrated in Figure 2R. To ensure robustness and generality, we propose
a method for computing the initial seed for non-linear optimization. Without this
step, our method may get trapped in a sub-optimal solution, resulting in large
errors, as shown in Table 1 (row D). Previous work [9] initialized albedo and
gains to constant values and assumed known camera poses and scene geometry.
We tested this configuration with our software and achieved an error of 1.23%
in estimating the real scale under these ideal conditions (row E). In contrast,
despite estimating camera poses and scene geometry automatically, our method
obtains a smaller error of 0.95%, thanks to a better initial guess.
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Seq_041 Seq_34 Seq_058 Seq_041 Seq_022
Polyp A Polyp A Polyp A Polyp D Polyp A

Image

3D

Normals

Result

Our method 10.4mm 11.4mm 2.7mm 11.8mm 4.2mm
Endoscopist 10mm 10mm 3mm 8–10mm 4–5mm
Discrepancy 0.4mm 1.4mm 0.3mm 2.8mm 0.3mm

(4%) (14%) (10%) (31%) (7%)

Fig. 3. Results in EndoMapper dataset [2].

5.5 Real Polyps Measurement

In the EndoMapper dataset, some sequences include metadata with annotations
derived from the endoscopist’s speech recorded during the procedure. We se-
lected five polyps where the practitioner estimated the lesion size. The selection
criteria included a clear view of the polyp, a distance to the surface of 5–15mm,
and smooth endoscope tip motion. We use four seconds of video at 5 FPS—
yielding a total of 20 non-contiguous frames—and process them with COLMAP
to reconstruct the 3D shape, whose scale is computed by our method. 1 We apply
Segment Anything [16] to identify the polyp in a single frame. The size of the
poly is determined by measuring the longest diameter of the 3D points within
the segmented region. Figure 3 presents an input image, the reconstructed 3D
shape, the estimated surface normals, and our diameter measurement within the
polyp boundaries. On average, our measurements deviate from the endoscopist’s
estimation by 1.0 mm (13%), demonstrating the potential of the method for
standardizing polyp size assessment.

1 On an i7 10700k 3.8 GHz CPU, the running time is 45 s for COLMAP reconstruction,
15 s for the initial scale estimation (Python prototype) and 0.4 s for minimizing eq.
(6) with Ceres. In future work, we will replace COLMAP with a real-time SLAM
method, and optimize the initial scale estimation in C++.
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6 Conclusions

We have presented, for the first time, a method to obtain 3D reconstructions
with real metric scale from a conventional monocular endoscope, under unknown
varying albedo, solely based on physical principles. The method does not require
any application-specific learning, prior knowledge, or hardware modifications —
only a calibrated light-camera setup. Our simulations demonstrate that accurate
metric scale can be recovered under practical conditions. Our experiments on
the EndoMapper dataset show that the method produces polyp measurements
closely matching those estimated visually by an endoscopist. This provides a
preliminary, yet solid, proof that the method bridges the simulation-to-real gap
and effectively estimates metric scale in real images. A quantitative evaluation
of its accuracy will require a dataset with ground-truth polyp size annotations.

Near-field photometry paves the way for real-scale visual SLAM with monoc-
ular endoscopes. This will be critical in the short term for accurate measure-
ments, and in the long term, for autonomous robotic exploration and surgery.
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