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Abstract. Source-free domain adaptation (SFDA), where only a pre-
trained source model is available to adapt to the target domain, has
gained widespread application in the medical field. Most existing meth-
ods overlook low-quality pseudo-labels, i.e., pseudo-labels with bound-
ary semantic confusion, when learning target domain-specific knowl-
edge, leading to the loss of crucial boundary information. Furthermore,
focusing solely on the specific knowledge can drive the model shifts
in an uncontrollable direction, resulting in model degradation. To ad-
dress these issues, we propose Dual Knowledge-aware Guidance (DKG),
a novel SFDA method that integrates domain-specific knowledge with
domain-invariant knowledge to improve transfer performance. Specifi-
cally, the pseudo-label calibration scheme is proposed to reduce seman-
tic bias in high-uncertainty pixels, preserving the boundary informa-
tion of target domain-specific knowledge. To ensure stable training, we
propose a domain-invariant knowledge-based loss strategy, leveraging a
confidence-guided mechanism and a consistency constraint. Additionally,
we also introduce a dynamic balancing loss to address class imbalance.
Extensive experiments on cross-domain fundus image segmentation show
that DKG achieves state-of-the-art performance. Code is available at
https://github.com/Hanshuqian/DKG.

Keywords: Source-free domain adaptation - Fundus image - Pseudo-
label calibration - Domain-invariant knowledge.

1 Introduction

Medical image segmentation is a critical visual task in computer-aided diagno-
sis. While deep neural networks have made remarkable advancements in this
field, dealing with domain shifts caused by different scanning devices or hospi-
tals remains a significant challenge [25]. Unsupervised domain adaptation (UDA)
strives to alleviate domain shift problem. However, typical UDA methods [30J9/27]
require coordinated access to source and target domains, which can be limited
by data privacy and security issues, especially in medical scenes. In order to
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Fig. 1. Analysis of domain-invariant knowledge. (a) Examples of inconsistent predic-
tion accuracy using the plain pseudo-labeling method. (b) Numbers of similarity and
differential feature points. (¢) Visualization of two probability values in the pixel-level
random sampling average probability distribution.

improve the practical application of the models, source-free domain adaptation
(SFDA) [OITTIT3IT4IT8/20] emerged. The core idea is to adapt a pre-trained source
model to the unlabeled target domain without using any source data.

Existing SFDA methods for image segmentation can be divided into two
mainstream types: generation-based and self-training methods. Generation-based
methods [28122] aim to produce source-like samples or distributions to compen-
sate for unavailable source data. However, the quality of these proxies poses a new
challenge. In contrast to the previous method, self-training methods [3[I0/29/5]
directly utilize model predictions on unlabeled target data for self-optimization,
making them more practical and flexible in actual applications. An intuitive
strategy is to generate pseudo-labels for the target domain using the source
model. Due to the domain shift, pseudo-labels inevitably contain noise. To im-
prove robustness, [3] proposes a dual denoising scheme at pixel and class levels
via uncertainty estimation and prototype evaluation. [I0] refines pseudo-labels
by addressing context inconsistency, while [29] introduces adaptive thresholding
through multi-class negative learning to select pseudo-labels.

Current SFDA methods typically regard high-quality pseudo-labels, such as
those with distinguishable semantics, as critical for transfer performance. How-
ever, exclusive reliance on these labels can lead to a loss of semantic boundary
information during training, impeding the capture of discriminative class fea-
tures. Additionally, as shown in Fig. (a), the impact of domain shift on different
target samples varies significantly, and this inconsistency exacerbates training
instability, potentially even leading to model degradation. Furthermore, Fig. b)
demonstrates that high-accuracy samples preserve more domain-shared features,
facilitating the learning of domain-specific features. Moreover, Fig. (c) reveals
the correlation between prediction confidence and domain-invariant knowledge
Kinvar (the overlapping region between source domain-specific knowledge s
and target domain-specific knowledge K;) through pixel-level random sampling
on target data using a non-adapted source model.
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To address these challenges, we propose the Dual Knowledge-aware Guid-
ance (DKG) method. Firstly, to effectively capture semantic boundary informa-
tion of pseudo-labels, we propose an Anchor Point-Driven Pseudo-Label Cal-
ibration scheme. Leveraging semantic distribution consistency between refer-
ence regions (anchor points) and high-uncertainty pixels in high-dimensional
feature space, the scheme calibrates the semantics of pseudo-labels with high-
uncertainty, which strives to mine domain-specific knowledge K, during target
domain adaptation. Additionally, global class prototype representation is em-
ployed to ensure anchor points’ reliability. Secondly, to enhance training stabil-
ity, we propose a loss strategy based on domain-invariant knowledge C;nyar- This
strategy leverages a confidence-guided mechanism and is further constrained by
the consistency between the uncertainty map and the class prototype distance.
Finally, to balance foreground and background during target domain-specific
knowledge learning, we design an adaptive balancing loss to adjust class contri-
butions. Experiments on cross-domain fundus image segmentation demonstrate
that our method achieves SOTA performance.

2 Method

In the setting of SFDA, we are given a model fs : Xy — s trained on the source
domain D, = {(«%, yf)}ivzl, along with an unlabeled dataset {x‘;}fvztl from target
domain D;. The goal of SFDA is to adapt the pre-trained model f, to the target
domain D; and obtain an adapted model f; : &y — ), with high accuracy.
In this paper, we consider the fundus image segmentation, z; € R7*Wx3 and
yi € {0, 1}HXWXC, where C' representing the number of classes and C = 2 as
there are two segmentation targets: optic cup and optic disc.

Fig. [2] illustrates our Dual Knowledge-aware Guidance (DKG) method. In
this section, we first introduce an Anchor Point-Driven Pseudo-Label Calibra-
tion scheme that effectively sharpens the semantic discriminative boundaries.
Then, we propose a domain-invariant knowledge-based loss strategy, followed by
a balancing loss designed for learning specific knowledge.

2.1 Anchor Point-Driven Pseudo-Label Calibration

Ensuring the accurate learning of domain-specific knowledge is key to improving
model transfer performance. However, significant domain distribution differences
often lead to semantic boundary bias in pseudo-labels. Different from the [16],
we focus on pixel-level semantic confidence variations. Leveraging the contextual
consistency of semantic information in the feature space, we propose the Anchor
Point-Driven Pseudo-Label Calibration (ADPC) scheme (see the blue region
in Fig. . ADPC effectively calibrates the pseudo-label boundary information,
enhancing the global semantics of domain-specific knowledge.

Pseudo-Label Calibration. Epistemic uncertainty aims to quantify the reli-
ability of predictions [3]. In this work, we model it using Monte Carlo Dropout
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Fig. 2. Overview of our proposed DKG. For a target input, the source model generates
an initial pseudo-label, and low-uncertainty pixels are refined using uncertainty map
and feature map, serving as anchor points for calibration (illustrated on the right).
Guided by the bias impact map, L;x is computed by aligning the uncertainty map with
the class prototype distance. L., is introduced to address class imbalance. The total
loss integrates both losses.

to obtain varying-quality pseudo-label regions. For a given target image z¢, K
random forward passes using fs, yielding prediction outputs py = f, (z%),k =

1,..., K. The initial pseudo-label and uncertainty map are defined as:
1 & 1w
—EZpk, P =1p>9], u= EZ(pk—p)Z, (1)
— k=1

where 1 is the indicator function, v € (0,1) is a probability threshold for gener-
ating binary pseudo-labels. Previous methods commonly use the low-uncertainty
mask m'? = 1 [u < ] (1 is the uncertainty threshold) to obtain pseudo-labels
for supervised learning. We further introduce the high-uncertainty mask m/*9" =
1w >n] and integrate both masks to preserve complete semantic boundary
information. Specifically, for each high-uncertainty pixel h, we search for the
nearest low-uncertainty pixel within a radius r in the feature space, where the
feature map F' is obtained from the layer before the last convolution. Using the
low-uncertainty pixels j as anchor points, we calibrate the semantic information
of the high-uncertainty pixel:

F, - F;

st st : j

Uy, = U5 : argmin (1 - ) . (2)
T d(hg)<r [ Fn| - [ Fj

Anchor Point Refinement. Low-uncertainty pixels as anchor points are prone
to being influenced by feature space error propagation. Directly using unopti-
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mized anchor points can lead to confirmation bias [I7]. To address this, we
propose a global representation-based approach to reduce semantic estimation
bias in low-uncertainty pixels. Specifically, we define the low-uncertainty masks
for foreground and background as mf9 = 1[j* = 1]1[u < 5] and m* = 1[j* =
0]1[u < 7], respectively. Then, we compute the foreground class prototype gl9
from each pixel v, the global class prototype G, and the adjust map A as follows:

fg: ZvFv.m'{jg'p’U

g S (3)
Nt
1 F.G
G=— fo. 9=~ _ A=801[j=1]. 4
N, 2 TRl " =1] @

We retain the highly similar regions in A, and the low-uncertainty mask is refined
as m™eov = mf9 © 1[A > §] + mb9.

2.2 Invariant Knowledge-Aware Loss

As shown in Fig. c)7 domain-invariant knowledge K;nuqr (shared knowledge
across domains), target domain-specific knowledge K; and source domain-specific
knowledge K¢ form a complete knowledge framework. Overlooking the extraction
of Kinvar during training may limit the model’s cross-domain generalization
ability, leading to under-transfer. To tackle this problem, we explore K;;yqr from
two perspectives. The learning process of the pre-trained model on the target
domain can be expressed as:

gt = fs (') = fi (a") = Ky (2%) +K5 (2%) =yt + A (Ks, Kt)
—_—

Kinvar(z*)

(5)

where y® denotes the expected label. From Eq. [5] it is evident that the knowledge
bias A (Ks, K¢) undermines the pre-trained model’s ability to represent target
domain samples, reducing prediction confidence. Statistical results in Fig. c)
show that the model exhibits higher decision confidence on correctly predicted
pixels than incorrect ones, as indicated by the probability ratio between the
second-largest and the current class. This suggests a positive correlation between
the ratio and knowledge bias. To quantify the impact of knowledge bias, we
introduce the Bias Impact Map (BIM) to measure its effect on each pixel v:

max p¢

ceC,c#£yt v

max pS
cec

BIM,=1-— (6)

The BIM-based loss is formulated as:

Loim ==Y BIM, - [g, -log(p,) + (1 = 9;) - log(1 = p,)] - (7)
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Eq. [7] guides the model to focus on domain-invariant knowledge through con-
fidence but does not explicitly align knowledge structures between source and
target domains, potentially leading to insufficient extraction. Inspired by this,
we introduce Kullback-Leibler divergence to match prediction uncertainty with
the prototype distance, effectively capturing consistent information. Specifically,
for a target sample x! and its uncertainty map u, we compute class prototypes
gf9 (foreground) and ¢*9 (background) using Eq. [3 The feature distance be-
tween each feature vector for pixel v to the two prototypes is then calculated as
d¥ = ||F, — g%|,, where w € {fg,bg}. To ensure robustness, we focus only on
low-uncertainty regions:

ud =u,-my, D¥=dY -m. (8)

v

Eq. [7is regularized to obtain the invariant knowledge-aware loss:

Lit = Loim + Y (KL (ul?|| D) + KL (u}?|D}7)) . (9)

2.3 Class-Wise Balancing Loss

Balancing the contribution of different classes remains a significant challenge
in medical image segmentation, as biased predictions toward a single dominant
class often result in trivial solutions [2]. Previous researchers typically use class-
weighted optimization based on pixel counts [23/[7]. However, this approach heav-
ily depends on pseudo-label accuracy and faces challenges in adapting to target
domain-specific knowledge early in training. Therefore, we introduce a dynamic
balancing loss based on batch-level knowledge.

Specifically, we calculate the average loss of foreground and background for
N, samples in the current batch:

fg:sz'v:bl Zoe]l[ylz]'] bgzzg\gl éceﬂ[ﬂZZO]
S g = 1] S g = 0]

where Lyee = — >, [0 - 1og (py) + (1 — 9%) - log (1 — py)]. Our balancing loss is
given as:

a , Q@

: (10)

A ald .
Ecbzfz {yf}‘log(pv)+§;g~ (lfyqt)) 'log(lfpv) : (11)

v Ay

2.4 Total Loss Function

To harmonize target domain-specific knowledge with domain-invariant knowl-
edge, the total loss integrates both strategies:

Liotar = »_BIM, Loy + > (KL (ul?||Df%) + KL (uf?||D})).  (12)
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Table 1. Comparison with other methods on two datasets. S-F refers to source-free.
=+ refers to the standard deviation across samples.

Optic Disc Segmentation| Optic Cup Segmentation
Methods 8- =5 Tt TASD[pixel[l| Dice[%[T [ASD[pixel]]
RIM-ONE-r3
W /o DA [3] 83.18+6.46 |24.15+15.58| 74.51+16.40 ({14.444+11.27
Oracle [25] 96.80 — 85.60 —
BEAL [25] | x | 89.80 - 81.00 -
AdvEnt [24] | x | 89.731+3.66 | 9.844+3.86 | 77.994+21.08 | 7.57+4.24
SRDA [1] v | 89.37£2.70 | 9.91£2.45 | 77.61+13.58 | 10.1545.75
DAE [12] v | 89.0843.32 | 11.63£6.84 | 79.01+12.82 | 10.314+8.45
DPL [3] v 1 90.13+3.06 | 9.43+3.46 | 79.784+11.05 | 9.01+5.59
CPR [10] v | 91.51+£3.20 | 7.75£3.09 | 77.11+18.02 | 9.124+4.30
EOAPNet [5]| v | 92.61+3.13 | 6.67+2.91 | 74.59+25.64 | 8.74+5.34
DKG(Ours)| v |92.68+3.60| 6.50+2.84 |83.35+15.63| 6.90+4.14
Drishti-GS
W/o DA [3] 93.8442.91 | 9.05+7.50 | 83.36+£11.95 | 11.39+6.30
Oracle [25] 97.40 - 90.10 -
BEAL [25] | x | 96.10 - 86.20 -
AdvEnt [24] | x | 96.16+1.65 | 4.36+1.83 | 82.75+11.08 | 11.36+7.22
SRDA [T] v 196.22+1.30 | 4.8843.47 | 80.67£11.78 | 13.1246.48
DAE [12] v 1 94.04+2.85 | 8.794+7.45 | 83.11+11.89 | 11.56+6.32
DPL [3] v 196.39+1.33 | 4.084+1.49 | 83.53+£17.80 |11.394+10.18
CPR [10] v 96.22+2.42 | 4.91+4.86 | 85.06£12.84 | 9.92+5.76
EOAPNet [5]| v | 96.46+1.66 | 4.00+1.83 | 79.75+10.31 | 13.95+6.55
DKG(Ours)| v [96.70+1.46| 3.72+1.55 |87.12+12.27| 8.33+£5.18

3 Experiments

Dataset. We evaluate our method on three widely-used fundus segmentation
datasets from different clinical centers: the REFUGE challenge training set [15]
as the source domain, the RIM-ONE-r3 [8] and Drishti-GS [2I]] datasets as target
domains. The source domain contains 400 images with labels, and the two target
domain data are divided into 99/60 and 50/51 for training/testing. We apply
the same preprocessing method as [3] for a fair comparison.

Implementation Details and Evaluation Metrics. We use DeepLabv3+ [4]
with a MobileNetV2 [19] backbone as our segmentation model, following the pre-
vious work [3I2526]. The threshold v for pseudo-label selection is set to 0.75, as
in [25], with an uncertainty threshold n = 0.02 by visually inspecting and radius
r =5 in Eq. [2] The similarity threshold § for the adjust map A is empirically
set to 0.7. We use the Adam optimizer with momentum coefficients of 0.9 and
0.99. During target domain adaptation, the learning rate is 2e-3, and the batch
size is 8. Our method avoids model degradation, enabling stable training for 20
epochs. Our framework is implemented in PyTorch, using an NVIDIA RTX A40
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Fig. 3. Drishti-GS as the target domain: (a) Qualitative comparison across different
methods. (b) An example of anchor point change using the proposed refinement scheme.

Table 2. Results of ablation study on the REFUGE to RIM-ONE-r3 adaptation.

+75 reéipvf/ —— é’:’fﬁ“ib Avg. Dice[%]1|Avg. ASD|pixel]]
X X X | X 82.96 9.97
v X X | X 86.07 7.80
v v X | X 86.80 7.53
v v X |V 87.30 6.95
v v v | X 87.33 7.04
X X V|V 84.61 7.47
v v VIV 88.02 6.70

GPU. To evaluate our proposed method, we use two standard metrics, including
Dice Coefficient (Dice) and Average Surface Distance (ASD).

Comparison with State-of-the-Arts. We compare our method with several
state-of-the-art domain adaptation approaches, including the baseline results
without domain adaptation (“Oracle”, as a lower bound) and fully supervised
learning results (“W/o DA”, as an upper bound). As shown in Table (I} our
method outperforms existing SFDA methods across all metrics and even sur-
passes traditional UDA approaches. Notably, in the challenging optic cup seg-
mentation task, our method achieves Dice improvements of 3.57% and 2.06% on
two datasets. Visualization results are presented in Fig. [3[a).

Ablation Study. We evaluate the contributions of each component in our
method using RIM-ONE-r3. As shown in Table [2] pseudo-label calibration sig-
nificantly improves segmentation performance, highlighting its effectiveness in
correcting low-quality pseudo-label semantics. The comparison between w /o re-
fine and w/ refine emphasizes the importance of anchor point refinement, as
visualized in Fig. b). Incorporating L;i leverages domain-invariant knowledge,
consistently boosting all metrics compared to using ADPC alone. In addition,
Ly reduces ASD by addressing class imbalance in domain-specific learning, im-
proving boundary segmentation accuracy. Furthermore, compared to using the
two losses individually, our total loss function represents an effective combination
strategy. These results demonstrate the effectiveness of each DKG component.
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4 Conclusion

This paper presents a Dual Knowledge-aware Guidance method for SFDA. For
the semantic boundary confusion in pseudo-labels, we propose an Anchor Point-
Driven Pseudo-Label Calibration scheme that ensures full capture of target
domain-specific knowledge. For stabilizing model training, we propose a domain-
invariant knowledge-aware loss strategy to keep cross-domain feature distribu-
tion alignment. Additionally, we employ a dynamic balancing loss to address the
class imbalance in target data. Experimental results on cross-domain fundus im-
age segmentation demonstrate that DKG achieves state-of-the-art performance.
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